More limit cycles than expected in Liénard equations
The paper deals with classical polynomial Lienard equations, i.e. planar vector fields associated to scalar second order differential equations x"+ f(x)x' + x = 0 where f is a polynomial. We prove that for a well-chosen polynomial f of degree 6, the equation exhibits 4 limit cycles. It induces that for n ≥ 3 there exist polynomials f of degree 2n such that the related equations exhibit more than n limit cycles. This contradicts the conjecture of Lins, de Melo and Pugh stating that for Lienard equations as above, with f of degree 2n, the maximum number of limit cycles is n. The limit cycles that we found are relaxation oscillations which appear in slow-fast systems at the boundary of classic…