0000000000123867

AUTHOR

Daniel Panazzolo

0000-0003-4279-6919

showing 1 related works from this author

More limit cycles than expected in Liénard equations

2007

The paper deals with classical polynomial Lienard equations, i.e. planar vector fields associated to scalar second order differential equations x"+ f(x)x' + x = 0 where f is a polynomial. We prove that for a well-chosen polynomial f of degree 6, the equation exhibits 4 limit cycles. It induces that for n ≥ 3 there exist polynomials f of degree 2n such that the related equations exhibit more than n limit cycles. This contradicts the conjecture of Lins, de Melo and Pugh stating that for Lienard equations as above, with f of degree 2n, the maximum number of limit cycles is n. The limit cycles that we found are relaxation oscillations which appear in slow-fast systems at the boundary of classic…

PolynomialConjectureLiénard equationZero of a functionApplied MathematicsGeneral MathematicsLimit cycleScalar (mathematics)Mathematical analysisVector fieldTEORIA QUALITATIVAScalar fieldMathematics
researchProduct