0000000000124111

AUTHOR

Dominik Schmitt

showing 5 related works from this author

Size-selective incorporation of DNA nanocages into nanoporous antimony-doped tin oxide materials.

2011

A conductive nanoporous antimony-doped tin oxide (ATO) powder has been prepared using the sol-gel method that contains three-dimensionally interconnected pores within the metal oxide and highly tunable pore sizes on the nanoscale. It is demonstrated that these porous materials possess the capability of hosting a tetrahedral-shaped DNA nanostructure of defined dimensions with high affinity. The tunability of pore size enables the porous substrate to selectively absorb the DNA nanostructures into the metal oxide cavities or exclude them from entering the surface layer. Both confocal fluorescence microscopy and solution FRET experiments revealed that the DNA nanostructures maintained their int…

AntimonyModels MolecularMaterials scienceNanoporousDopingGeneral EngineeringOxideElectric ConductivityGeneral Physics and AstronomyTin CompoundsNanotechnologyDNACarbocyaninesTin oxidechemistry.chemical_compoundNanoporesNanocageschemistryDNA nanotechnologyNucleic Acid ConformationGeneral Materials SciencePorous mediumNanoscopic scaleACS nano
researchProduct

Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

2015

The oxidative degradation of lignin into a variety of valuable products has been under investigation since the first half of the last century. Especially, the chance to claim this cheap, abundant and renewable source for the production of the important aroma chemical vanillin (1) was one of the major driving forces of lignin research. So far most of the developed methods fail in technical application since no viable concept for work-up is included. This work represents a combined approach of electrochemical conversion of Kraft lignin and product recovery by adsorption on a strongly basic anion exchange resin. Electrolysis conditions are optimized regarding reaction temperatures below 100 °C…

ElectrolysisVanillinOrganic ChemistryligninElectrochemistryrenewable resourcesFull Research Paperlaw.inventionlcsh:QD241-441chemistry.chemical_compoundChemistrynickelAdsorptionchemistrylcsh:Organic chemistryelectrochemistrylawadsorptionDegradation (geology)LigninOrganic chemistrylcsh:QPhenolsIon-exchange resinlcsh:ScienceBeilstein Journal of Organic Chemistry
researchProduct

Adsorption and separation of black liquor-derived phenol derivatives using anion exchange resins

2017

Abstract Kraft black liquor is the major waste stream of the paper pulping industry. This stream is usually directly incinerated in such facilities for energy production and recycling of the inorganic chemicals involved. However, lignin and other low molecular organic fragments dissolved in black liquor give rise to a large variety of aromatic fine chemicals. Energetic use of black liquor and its components prevents the removal of these valuable compounds from the waste stream. We present an easy protocol for adsorption and selective desorption of low molecular phenol derivatives from black liquor depending on the composition of the desorption system. Furthermore, adsorption experiments in …

Ion exchange010405 organic chemistryChemistryfood and beveragesFiltration and Separation010402 general chemistry01 natural sciences0104 chemical sciencesAnalytical ChemistryIncinerationchemistry.chemical_compoundAdsorptionDesorptionOrganic chemistryPhenolIon-exchange resinBlack liquorKraft paperSeparation and Purification Technology
researchProduct

Spectroelectrochemistry of cytochrome c and azurin immobilized in nanoporous antimony-doped tin oxide

2011

Stable immobilization of two redox proteins, cytochrome c and azurin, in a thin film of highly mesoporous antimony-doped tin oxide is demonstrated via UV-vis spectroscopic and electrochemical investigation.

AntimonyMaterials scienceInorganic chemistrychemistry.chemical_elementElectrochemistryRedoxCatalysisNanoporesAntimonyAzurinMaterials ChemistrybiologyNanoporousCytochrome ctechnology industry and agricultureMetals and AlloysCytochromes cTin CompoundsElectrochemical TechniquesGeneral Chemistryequipment and suppliesTin oxideSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsImmobilized ProteinschemistryCeramics and Compositesbiology.proteinSpectrophotometry UltravioletAdsorptionAzurinMesoporous materialChemical Communications
researchProduct

Anodic Degradation of Lignin at Active Transition Metal-based Alloys and Performance-enhanced Anodes

2018

010405 organic chemistryChemistryVanillin010402 general chemistryElectrochemistry01 natural sciencesCatalysis0104 chemical sciencesAnodechemistry.chemical_compoundTransition metalChemical engineeringElectrochemistryDegradation (geology)LigninChemElectroChem
researchProduct