0000000000124150

AUTHOR

Craig W. Wilson

showing 2 related works from this author

Phase diagram of calcium at high pressure and high temperature

2018

Resistively heated diamond-anvil cells have been used together with synchrotron x-ray diffraction to investigate the phase diagram of calcium up to 50 GPa and 800 K. The phase boundaries between the Ca-I (fcc), Ca-II (bcc), and Ca-III (simple cubic, sc) phases have been determined at these pressure-temperature conditions, and the ambient temperature equation of state has been generated. The equation of state parameters at ambient temperature have been determined from the experimental compression curve of the observed phases by using third-order Birch-Murnaghan and Vinet equations. A thermal equation of state was also determined for Ca-I and Ca-II by combining the room-temperature Birch-Murn…

DiffractionEquation of stateMaterials sciencePhysics and Astronomy (miscellaneous)Thermodynamics02 engineering and technologyCubic crystal system01 natural sciencesThermal expansionPhysics::GeophysicsSynchrotronCondensed Matter::Materials SciencePhase (matter)0103 physical sciencesGeneral Materials Science010306 general physicsPhase diagramAlkaline earth metalTransitionsEquation-of-state021001 nanoscience & nanotechnologyX-ray crystallographyX-Ray-diffractionAlkaline-earth metals0210 nano-technology
researchProduct

High-pressure/high-temperature phase diagram of zinc

2018

The phase diagram of zinc (Zn) has been explored up to 140 GPa and 6000K, by combining optical observations, x-ray diffraction, and ab initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed (hcp) crystal symmetry up to the melting temperature. The known decrease of the axial ratio (c/a) of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300K up to the melting temperature. The pressure at which c/a reaches root 3 (approximate to 10GPa) is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple pol…

DiffractionPhase transitionMaterials sciencemeltingPOWDER DIFFRACTIONELECTRONIC TOPOLOGICAL TRANSITIONSThermodynamicschemistry.chemical_elementFOS: Physical sciences02 engineering and technologyCrystal structureZincDIAMOND-ANVIL CELL01 natural scienceshigh temperatureCondensed Matter::Materials ScienceX-RAY-DIFFRACTIONPhase (matter)Condensed Matter::Superconductivity0103 physical sciencesGeneral Materials Science010306 general physicsMELTING CURVEPhase diagramCondensed Matter - Materials ScienceAxial ratioSYNCHROTRONab initio calculationszincMaterials Science (cond-mat.mtrl-sci)021001 nanoscience & nanotechnologyCondensed Matter PhysicsCompression (physics)EQUATION-OF-STATEhigh pressurechemistryx-ray diffractionphase transitionZNMETALS0210 nano-technologyRESISTANCE
researchProduct