0000000000124264
AUTHOR
John F. Teiber
Dominant role of paraoxonases in inactivation of the Pseudomonas aeruginosa quorum-sensing signal N-(3-oxododecanoyl)-L-homoserine lactone.
Pseudomonas aeruginosa is an opportunistic bacterium which causes serious infections in immunocompromised and cystic fibrosis patients (10). As with many gram-negative bacteria, P. aeruginosa produces acyl-homoserine lactone (AHL) quorum-sensing (QS) signaling molecules termed autoinducers which allow the single-celled organisms to coordinate their actions (36). N-(3-Oxododecanoyl)-l-homoserine lactone (3OC12-HSL) is a key autoinducer synthesized by P. aeruginosa which regulates the expression of extracellular virulence factors and biofilm formation (5, 36). Rats and mice experimentally infected with P. aeruginosa mutants deficient in the ability to produce or respond to 3OC12-HSL exhibited…
Novel Paraoxonase 2-Dependent Mechanism Mediating the Biological Effects of the Pseudomonas aeruginosa Quorum-Sensing Molecule N-(3-Oxo-Dodecanoyl)-l-Homoserine Lactone
ABSTRACT Pseudomonas aeruginosa produces N -(3-oxo-dodecanoyl)- l -homoserine lactone (3OC12), a crucial signaling molecule that elicits diverse biological responses in host cells thought to subvert immune defenses. The mechanism mediating many of these responses remains unknown. The intracellular lactonase paraoxonase 2 (PON2) hydrolyzes and inactivates 3OC12 and is therefore considered a component of host cells that attenuates 3OC12-mediated responses. Here, we demonstrate in cell lines and in primary human bronchial epithelial cells that 3OC12 is rapidly hydrolyzed intracellularly by PON2 to 3OC12 acid, which becomes trapped and accumulates within the cells. Subcellularly, 3OC12 acid acc…
One Enzyme, Two Functions
The human enzyme paraoxonase-2 (PON2) has two functions, an enzymatic lactonase activity and the reduction of intracellular oxidative stress. As a lactonase, it dominantly hydrolyzes bacterial signaling molecule 3OC12 and may contribute to the defense against pathogenic Pseudomonas aeruginosa. By its anti-oxidative effect, PON2 reduces cellular oxidative damage and influences redox signaling, which promotes cell survival. This may be appreciated but also deleterious given that high PON2 levels reduce atherosclerosis but may stabilize tumor cells. Here we addressed the unknown mechanisms and linkage of PON2 enzymatic and anti-oxidative function. We demonstrate that PON2 indirectly but specif…
PON3 is upregulated in cancer tissues and protects against mitochondrial superoxide-mediated cell death
To achieve malignancy, cancer cells convert numerous signaling pathways, with evasion from cell death being a characteristic hallmark. The cell death machinery represents an anti-cancer target demanding constant identification of tumor-specific signaling molecules. Control of mitochondrial radical formation, particularly superoxide interconnects cell death signals with appropriate mechanistic execution. Superoxide is potentially damaging, but also triggers mitochondrial cytochrome c release. While paraoxonase (PON) enzymes are known to protect against cardiovascular diseases, recent data revealed that PON2 attenuated mitochondrial radical formation and execution of cell death. Another famil…
Paraoxonase-2 regulates coagulation activation through endothelial tissue factor
Oxidative stress and inflammation of the vessel wall contribute to prothrombotic states. The antioxidative protein paraoxonase-2 (PON2) shows reduced expression in human atherosclerotic plaques and endothelial cells in particular. Supporting a direct role for PON2 in cardiovascular diseases, Pon2 deficiency in mice promotes atherogenesis through incompletely understood mechanisms. Here, we show that deregulated redox regulation in Pon2 deficiency causes vascular inflammation and abnormalities in blood coagulation. In unchallenged Pon2-/- mice, we find increased oxidative stress and endothelial dysfunction. Bone marrow transplantation experiments and studies with endothelial cells provide ev…