0000000000124330

AUTHOR

Ingars Lukosevics

Synthesis and studying of reduced few-layered graphene coatings in gas sensor applications

In this work reduced few-layered graphene (rFLG) nanoparticles were synthesized using electrochemical pulse exfoliation method from waste graphite crucibles. The regular change in voltage polarity in the synthesis process ensures both the separation of graphite in layers and the reduction of graphene oxide. A method for synthesizing free-standing rFLG and nitrocellulose (NC) composite film has been developed involving creation of rFLG-NC ink that can be deposited on various substrates. It has been observed that a successful synthesis of a free-standing composite coating is possible with the mass ratio of rFLG:NC at least 9:1 of which resistivity is on the order of approximate 10 ohm-centime…

research product

Cladding-Pumped Er/Yb-Co-Doped Fiber Amplifier for Multi-Channel Operation

The Institute of Solid State Physics, University of Latvia, as a Center of Excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. We express our gratitude to rer. nat. Nicoletta Haarlammert from Fraunhofer Institute for Applied Optics and Precision Engineering IOF for the refractive index measurements of ytterbium/erbium-co-doped fibers. This work is supported by the European Regional Development Fund project No. 1.1.1.1/18/A/068.

research product

Electrochemical exfoliation-streamline method for synthesis of nitrogen doped graphene

The authors gratefully acknowledge financial support from the Latvian Council of Science, Project LZP FLPP No. LZP-2018/1 0194, and the Institute of Solid State Physics, University of Latvia that as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2026-2017-TeamingPhase2 under Grant Agreement No. 739508, Project CAMART2.

research product