0000000000124366
AUTHOR
Hyundae Lee
Anomalous localized resonance using a folded geometry in three dimensions
If a body of dielectric material is coated by a plasmonic structure of negative dielectric material with nonzero loss parameter, then cloaking by anomalous localized resonance (CALR) may occur as the loss parameter tends to zero. It was proved in other papers by authors that if the coated structure is circular (2D) and dielectric constant of the shell is a negative constant (with loss parameter), then CALR occurs, and if the coated structure is spherical (3D), then CALR does not occur. The aim of this paper is to show that the CALR takes place if the spherical coated structure has a specially designed anisotropic dielectric tensor. The anisotropic dielectric tensor is designed by unfolding …
Spectral analysis of the Neumann-Poincaré operator and characterization of the stress concentration in anti-plane elasticity
When holes or hard elastic inclusions are closely located, stress which is the gradient of the solution to the anti-plane elasticity equation can be arbitrarily large as the distance between two inclusions tends to zero. It is important to precisely characterize the blow-up of the gradient of such an equation. In this paper we show that the blow-up of the gradient can be characterized by a singular function defined by the single layer potential of an eigenfunction corresponding to the eigenvalue 1/2 of a Neumann–Poincare type operator defined on the boundaries of the inclusions. By comparing the singular function with the one corresponding to two disks osculating to the inclusions, we quant…
Spectral theory of a Neumann-Poincare-type operator and analysis of cloaking due to anomalous localized resonance
The aim of this paper is to give a mathematical justification of cloaking due to anomalous localized resonance (CALR). We consider the dielectric problem with a source term in a structure with a layer of plasmonic material. Using layer potentials and symmetrization techniques, we give a necessary and sufficient condition on the fixed source term for electromagnetic power dissipation to blow up as the loss parameter of the plasmonic material goes to zero. This condition is written in terms of the Newtonian potential of the source term. In the case of concentric disks, we make the condition even more explicit. Using the condition, we are able to show that for any source supported outside a cr…