0000000000124401

AUTHOR

Ute Frederiksen

Evidence for a dysfunction and disease-promoting role of the circadian clock in the diabetic retina.

Diabetic retinopathy is a major complication of chronic hyperglycemia and a leading cause of blindness in developed countries. In the present study the interaction between diabetes and retinal clocks was investigated in mice. It was seen that in the db/db mouse - a widely used animal model of diabetic retinopathy - clock function and circadian regulation of gene expression was disturbed in the retina. Remarkably, elimination of clock function by Bmal1-deficiency mitigates the progression of pathophysiology of the diabetic retina. Thus high-fat diet was seen to induce histopathology and molecular markers associated with diabetic retinopathy in wild type but not in Bmal1-deficient mice. The d…

research product

Unique clockwork in photoreceptor of rat

In mammals, the retina contains a clock system that oscillates independently of the master clock in the suprachiasmatic nucleus and allows the retina to anticipate and to adapt to the sustained daily changes in ambient illumination. Using a combination of laser capture micro-dissection and quantitative PCR in the present study, the clockwork of mammalian photoreceptors has been recorded. The transcript amounts of the core clock genes Clock, Bmal1, Period1 (Per1), Per3, Cryptochrome2, and Casein kinase Ie in photoreceptors of rat retina have been found to undergo daily changes. Clock and Bmal1 peak with Per1 and Per3 around dark onset, whereas Casein kinase Ie and Cryptochrome2 peak at night…

research product