0000000000124449

AUTHOR

Albrecht Stroh

showing 31 related works from this author

Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation.

2021

Significance Multiple sclerosis (MS) is a neuroinflammatory, demyelinating disease that represents one of the most frequent causes of irreversible disability in young adults. Treatment options to halt disability are limited. We discovered that T helper (Th)17 cells in contact with oligodendrocytes produce higher levels of glutamate and induce significantly greater oligodendrocyte damage than their Th2 counterpart. Blockade of CD29, which is linked to glutamate release pathways and expressed in high levels on Th17 cells, preserved human oligodendrocyte processes from Th17-mediated injury. Our data thus provide evidence for the direct and deleterious attack of Th17 cells on the myelin compart…

Programmed cell deathEncephalomyelitis Autoimmune ExperimentalCentral nervous systemFreund's AdjuvantoligodendrocytesMice Transgenicglutamate03 medical and health sciencesMyelinMice0302 clinical medicineImmunology and Inflammationintravital microscopymedicineAnimalsNeuroinflammation030304 developmental biologyInflammationMice Knockout0303 health sciencesMultidisciplinaryChemistryMultiple sclerosisGlutamate receptorMembrane ProteinsCD29Biological SciencesCD29 blockademedicine.disease420Oligodendrocyte3. Good healthCell biologyDNA-Binding ProteinsMice Inbred C57BLOligodendrogliamedicine.anatomical_structurePertussis ToxinTh17 CellsMyelin-Oligodendrocyte Glycoprotein030217 neurology & neurosurgeryProceedings of the National Academy of Sciences of the United States of America
researchProduct

Excitability regulation in the dorsomedial prefrontal cortex during sustained instructed fear responses: a TMS-EEG study

2018

AbstractThreat detection is essential for protecting individuals from adverse situations, in which a network of amygdala, limbic regions and dorsomedial prefrontal cortex (dmPFC) regions are involved in fear processing. Excitability regulation in the dmPFC might be crucial for fear processing, while abnormal patterns could lead to mental illness. Notwithstanding, non-invasive paradigms to measure excitability regulation during fear processing in humans are missing. To address this challenge we adapted an approach for excitability characterization, combining electroencephalography (EEG) and transcranial magnetic stimulation (TMS) over the dmPFC during an instructed fear paradigm, to dynamica…

AdultMalemedicine.medical_treatmentPrefrontal Cortexlcsh:MedicineElectroencephalographyAmygdalaBrain mappingArticle050105 experimental psychologyYoung Adult03 medical and health sciences0302 clinical medicineDorsomedial Prefrontal Cortex ; Fear Paradigm ; TMS-evoked Potentials (TEPs) ; Fear Network ; Fear ProcessingHeart RateReaction TimemedicineHumans0501 psychology and cognitive scienceslcsh:ScienceEvoked PotentialsBrain MappingElectroshockMultidisciplinarymedicine.diagnostic_test05 social scienceslcsh:RHealthy subjectsStructural integrityElectroencephalographyFearDorsomedial prefrontal cortexTranscranial Magnetic StimulationTranscranial magnetic stimulationmedicine.anatomical_structureFemalelcsh:QPsychologyNeuroscience030217 neurology & neurosurgery
researchProduct

Tracking of Autologous VSOP-Labeled Mesenchymal Stem Cells in the Sheep Brain Using 3.0 T MRI

2012

Assessment of biodistribution and monitoring of cell migration processes in vivo are essential for the safety of novel cell-based therapies for ischemic stroke and early-stage clinical trials, but are mainly lacking investigation in large animal models which are closer to the situation found in human patients. This chapter reports a series of experiments which establish a MRI-sensitive labeling procedure for autologous ovine mesenchymal stem cells (MSC) and the assessment of in vivo and in vitro detection limits of the cells at 3.0 T. Cell migration was monitored after intravenous transplantation following experimental stroke in sheep. Cell detection was feasible at 3.0 T with detection lim…

Pathologymedicine.medical_specialtybusiness.industryCellMesenchymal stem cellCell migrationIn vitroTransplantationmedicine.anatomical_structureIn vivoParenchymaMedicinebusinessHoming (hematopoietic)
researchProduct

Combining Optogenetics with MEA, Depth-Resolved LFPs and Assessing the Scope of Optogenetic Network Modulation

2017

Scope (project management)Computer scienceModulationOptogeneticsNeuroscience
researchProduct

Excitability regulation in the dorsomedial prefrontal cortex during sustained instructed fear responses: a TMS-EEG study

2018

AbstractBackgroundThreat detection is essential for protecting individuals from precarious situations. Early studies suggested a network of amygdala, limbic regions and dorsomedial prefrontal cortex (dmPFC) involved in fear processing. Excitability regulation in the dmPFC might be crucial for physiological fear processing, while an abnormal excitability pattern could lead to mental illness. Non-invasive paradigms to measure excitability regulation during fear processing in humans are missing.MethodsWe adapted an experimental approach of excitability characterization using electroencephalography (EEG) recordings and transcranial magnetic stimulation (TMS) over the dmPFC during an instructed …

Transcranial magnetic stimulationmedicine.anatomical_structuremedicine.diagnostic_testmedicine.medical_treatmentmedicineHealthy subjectsStructural integrityDorsomedial prefrontal cortexElectroencephalographyPsychologyNeuroscienceAmygdala
researchProduct

Precise Somatotopic Thalamocortical Axon Guidance Depends on LPA-Mediated PRG-2/Radixin Signaling

2016

Summary Precise connection of thalamic barreloids with their corresponding cortical barrels is critical for processing of vibrissal sensory information. Here, we show that PRG-2, a phospholipid-interacting molecule, is important for thalamocortical axon guidance. Developing thalamocortical fibers both in PRG-2 full knockout (KO) and in thalamus-specific KO mice prematurely entered the cortical plate, eventually innervating non-corresponding barrels. This misrouting relied on lost axonal sensitivity toward lysophosphatidic acid (LPA), which failed to repel PRG-2-deficient thalamocortical fibers. PRG-2 electroporation in the PRG-2−/− thalamus restored the aberrant cortical innervation. We ide…

0301 basic medicineNeuroscience(all)ThalamusGrowth ConesSensory systemBiologyArticle03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineDiscrimination PsychologicalThalamusRadixinLysophosphatidic acidNeural PathwaysmedicineAnimalsPhosphorylationGrowth coneCerebral CortexMice KnockoutGeneral NeuroscienceMembrane ProteinsAxon GuidanceCytoskeletal Proteins030104 developmental biologymedicine.anatomical_structurechemistryCerebral cortexAxon guidanceSignal transductionLysophospholipidsNeuroscience030217 neurology & neurosurgerySignal TransductionNeuron
researchProduct

Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves.

2017

When a person is in a deep non-dreaming sleep, neurons in their brain alternate slowly between periods of silence and periods of activity. This gives rise to low-frequency brain rhythms called slow waves, which are thought to help stabilize memories. Slow wave activity can be detected on multiple scales, from the pattern of electrical impulses sent by an individual neuron to the collective activity of the brain’s entire outer layer, the cortex. But does slow wave activity in an individual group of neurons in the cortex affect the activity of the rest of the brain? To find out, Schwalm, Schmid, Wachsmuth et al. took advantage of the fact that slow waves also occur under general anesthesia, a…

0301 basic medicinegenetic structuresQH301-705.5Scienceresting-state functional connectivityThalamusslow waves ; BOLD fMRI ; calcium recordingsBiologybehavioral disciplines and activitiesGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicineRhythmslow wavesThalamusCortex (anatomy)medicineOscillation (cell signaling)Premovement neuronal activityAnimalsddc:610Calcium SignalingBOLD fMRIBiology (General)Functional MRICerebral CortexGeneral Immunology and MicrobiologyGeneral NeuroscienceQRGeneral MedicineHuman brainAnatomyMagnetic Resonance ImagingRatscalcium recordings030104 developmental biologymedicine.anatomical_structurenervous systemCerebral cortexMedicineRatNeuronInsightNeuroscience030217 neurology & neurosurgerypsychological phenomena and processesNeuroscienceeLife
researchProduct

Optogenetics in Stem Cell Research: Focus on the Central Nervous System

2017

Stem cell-based therapies of CNS disorders represent a promising approach in translational and regenerative medicine. Stem cell-based tissue replacement and regeneration would, for the first time, offer a causal treatment strategy which is most likely not bound to a specific time window. Therapeutic strategies relying on this paradigm would require administration of exogenous stem cells to the CNS and/or the augmentation of endogenous stem cell capabilities. However, it remains unclear whether tissue replacement or bystander effects are required to induce such effects. Conventional experimental techniques will not be able to causally reveal such information, due to the complexity and coinci…

TransplantationCell typeMechanism (biology)medicine.medical_treatmentRegeneration (biology)medicineStem-cell therapyStem cellBiologyOptogeneticsRegenerative medicineNeuroscience
researchProduct

Increased Neural Activity in Mesostriatal Regions after Prefrontal Transcranial Direct Current Stimulation and L-DOPA Administration

2019

Dopamine dysfunction is associated with a wide range of neuropsychiatric disorders commonly treated pharmacologically or invasively. Recent studies provide evidence for a nonpharmacological and noninvasive alternative that allows similar manipulation of the dopaminergic system: transcranial direct current stimulation (tDCS). In rodents, tDCS has been shown to increase neural activity in subcortical parts of the dopaminergic system, and recent studies in humans provide evidence that tDCS over prefrontal regions induces striatal dopamine release and affects reward-related behavior. Based on these findings, we used fMRI in healthy human participants and measured the fractional amplitude of low…

AdultMaleLevodopamedicine.medical_treatmentDopaminePrefrontal CortexTranscranial Direct Current StimulationLevodopa03 medical and health sciencesNeural activitySpatial similarityYoung Adult0302 clinical medicineDopamineMedicineAnimalsHumansSingle-Blind MethodResearch Articles030304 developmental biologyNeurons0303 health sciencesBrain MappingResting state fMRITranscranial direct-current stimulationbusiness.industryReceptors Dopamine D2General NeuroscienceReceptors Dopamine D1DopaminergicMagnetic Resonance ImagingCorpus StriatumDopamine receptorRats Inbred LewFemalebusinessNeuroscience030217 neurology & neurosurgerymedicine.drug
researchProduct

Analysis of Activity States of Local Neuronal Microcircuits in Mouse Brain

2018

Time series of neuronal activity corresponding to different activity states in mouse brain are analyzed in the time domain and the time-frequency domain. The signals are associated with either a slow wave brain state or a persistent brain state. For both states, characteristic spectral features are identified and a simple detector is proposed that is able to identify the brain state with low latency and high accuracy. In practice, being able to monitor the brain state online and in real time is crucial for improved in vivoexperiments and, ultimately, for a causal understanding of brain dynamics.

0301 basic medicine03 medical and health sciences030104 developmental biologyQuantitative Biology::Neurons and CognitionComputer sciencePremovement neuronal activitySpectrogramTime domainNeuroscience2018 26th European Signal Processing Conference (EUSIPCO)
researchProduct

Making Waves: Initiation and Propagation of Corticothalamic Ca2+ Waves In Vivo

2013

Corticothalamic slow oscillations of neuronal activity determine internal brain states. At least in the cortex, the electrical activity is associated with large neuronal Ca(2+) transients. Here we implemented an optogenetic approach to explore causal features of the generation of slow oscillation-associated Ca(2+) waves in the in vivo mouse brain. We demonstrate that brief optogenetic stimulation (3-20 ms) of a local group of layer 5 cortical neurons is sufficient for the induction of global brain Ca(2+) waves. These Ca(2+) waves are evoked in an all-or-none manner, exhibit refractoriness during repetitive stimulation, and propagate over long distances. By local optogenetic stimulation, we …

Cerebral CortexRefractory periodGeneral NeuroscienceNeuroscience(all)ThalamusMice TransgenicStimulationCortical neuronsBiologyOptogeneticsCortex (botany)Mice Inbred C57BLOptogeneticsMiceThalamusIn vivoNeural PathwaysAnimalsPremovement neuronal activityCalcium SignalingNeurosciencePhotic StimulationVisual CortexNeuron
researchProduct

Concepts of All-Optical Physiology

2017

Cognitive scienceAll opticalChemistryMathematical physiology
researchProduct

β1-Integrin– and K(V)1.3 channel–dependent signaling stimulates glutamate release from Th17 cells

2020

Although the impact of Th17 cells on autoimmunity is undisputable, their pathogenic effector mechanism is still enigmatic. We discovered soluble N-ethylmaleimide–sensitive factor attachment receptor (SNARE) complex proteins in Th17 cells that enable a vesicular glutamate release pathway that induces local intracytoplasmic calcium release and subsequent damage in neurons. This pathway is glutamine dependent and triggered by binding of β1-integrin to vascular cell adhesion molecule 1 (VCAM-1) on neurons in the inflammatory context. Glutamate secretion could be blocked by inhibiting either glutaminase or K(V)1.3 channels, which are known to be linked to integrin expression and highly expressed…

0301 basic medicineMultiple SclerosisGlutamic AcidVascular Cell Adhesion Molecule-1Cell Communication03 medical and health sciencesMice0302 clinical medicineAnimalsHumansChannel blockerReceptorNeuroinflammationMice KnockoutKv1.3 Potassium ChannelGlutamate secretionChemistryGlutaminaseCell adhesion moleculeIntegrin beta1Glutamate receptorGeneral MedicineCell biologyGlutamine030104 developmental biology030220 oncology & carcinogenesisTh17 CellsSNARE ProteinsResearch ArticleSignal Transduction
researchProduct

Convergence of Cortical and Sensory Driver Inputs on Single Thalamocortical Cells

2013

Ascending and descending information is relayed through the thalamus via strong, "driver" pathways. According to our current knowledge, different driver pathways are organized in parallel streams and do not interact at the thalamic level. Using an electron microscopic approach combined with optogenetics and in vivo physiology, we examined whether driver inputs arising from different sources can interact at single thalamocortical cells in the rodent somatosensory thalamus (nucleus posterior, POm). Both the anatomical and the physiological data demonstrated that ascending driver inputs from the brainstem and descending driver inputs from cortical layer 5 pyramidal neurons converge and interac…

MalePatch-Clamp TechniquesCognitive NeuroscienceThalamusBiotinMice TransgenicSensory systemOptogeneticsBiologySomatosensory systemFunctional LateralityMembrane PotentialsMiceCellular and Molecular NeuroscienceChannelrhodopsinsMicroscopy Electron TransmissionThalamusNeural PathwaysmedicineAnimalsPhytohemagglutininsRats WistarCerebral CortexNeuronsExcitatory Postsynaptic PotentialsDextransddc:Ratsmedicine.anatomical_structureCerebral cortexSynapsesRecurrent thalamo-cortical resonanceVesicular Glutamate Transport Protein 2BrainstemNucleusNeuroscienceCerebral Cortex
researchProduct

Towards Opto-Magnetic Physiology: Concepts and Pitfalls of ofMRI

2017

Cognitive scienceEngineeringbusiness.industrybusiness
researchProduct

A Safe and Effective Magnetic Labeling Protocol for MRI-Based Tracking of Human Adult Neural Stem Cells

2019

Magnetic resonance imaging (MRI) provides a unique tool for in vivo visualization and tracking of stem cells in the brain. This is of particular importance when assessing safety of experimental cell treatments in the preclinical or clinical setup. Yet, specific imaging requires an efficient and non-perturbing cellular magnetic labeling which precludes adverse effects of the tag, e.g., the impact of iron-oxide-nanoparticles on the critical differentiation and integration processes of the respective stem cell population investigated. In this study we investigated the effects of very small superparamagnetic iron oxide particle (VSOP) labeling on viability, stemness, and neuronal differentiatio…

Cell physiologyImmunocytochemistryImaging phantomlcsh:RC321-57103 medical and health sciences0302 clinical medicineMedizinische FakultätIn vivomedicinemagnetic resonance imagingddc:610lcsh:Neurosciences. Biological psychiatry. NeuropsychiatryCNS – disorderOriginal Research030304 developmental biology0303 health sciencesmedicine.diagnostic_testChemistryQHGeneral Neurosciencemagnetic labelingCNS-disorderMagnetic resonance imagingVSOPR1Neural stem cellQRddc:Human Adult Stem Cells ; Magnetic Labeling ; Mri ; Cell Tracking ; Cns - DisorderCell biologycell trackingCNS – disorder ; human adult stem cells ; magnetic labeling ; MRI ; cell trackingStem cell030217 neurology & neurosurgeryNeuroscienceRChuman adult stem cellsMRIFrontiers in Neuroscience
researchProduct

Navigating the translational roadblock: Towards highly specific and effective all-optical interrogations of neural circuits

2020

AbstractTwo-photon (2-P) all-optical approaches combine in vivo 2-P calcium imaging and 2-P optogenetic modulations and have the potential to build a framework for network-based therapies, e.g. for rebalancing maladaptive activity patterns in preclinical models of neurological disorders. Here, our goal was to tailor these approaches for this purpose: Firstly, we combined in vivo juxtacellular recordings and GCaMP6f-based 2-P calcium imaging in layer II/III of mouse visual cortex to tune our detection algorithm towards a 100 % specific identification of AP-related calcium transients. False-positive-free detection was achieved at a sensitivity of approximately 73 %. To further increase specif…

Opsingenetic structuresComputer scienceCortical neuronsOptogeneticsPhotostimulationCalcium imagingVisual cortexmedicine.anatomical_structureIn vivoGCaMPmedicineExcitatory postsynaptic potentialBiological neural networkNeuroscience
researchProduct

CNS-localized myeloid cells capture living invading T cells during neuroinflammation

2020

Using an in vivo real-time approach, the authors show that local myeloid cells remove early CNS-invading T cells via an engulfment pathway that is dependent on N-acetyl-D-glucosamine (GlcNAc) and lectin. These results reveal a novel capacity of myeloid cells to counteract neuroinflammation.

0301 basic medicineCentral Nervous SystemProgrammed cell deathCell signalingEncephalomyelitis Autoimmune ExperimentalCell SurvivalEncephalomyelitisT cellT-LymphocytesImmunologyInnate Immunity and InflammationCX3C Chemokine Receptor 1AutoimmunityReceptors Cell SurfaceCell CommunicationPhosphatidylserinesBiologyLymphocyte ActivationSeverity of Illness IndexArticle03 medical and health sciencesMice0302 clinical medicineNeuroinflammationPhagocytosisIn vivomedicineImmunology and AllergyAnimalsLectins C-TypeMyeloid CellsNeuroinflammationInflammationGlucosamineCell DeathExperimental autoimmune encephalomyelitismedicine.diseaseCell biology030104 developmental biologymedicine.anatomical_structureMannose-Binding LectinsTh17 Cells030217 neurology & neurosurgeryEx vivoMannose ReceptorThe Journal of Experimental Medicine
researchProduct

A Roadmap to Applying Optogenetics in Neuroscience

2014

Optogenetics allows for the specific manipulation of the activity of genetically defined cell populations in the CNS. Yet, it requires effective gene delivery, light stimulation, and readout strategies. Here, we provide a roadmap aimed at guiding the experimenter in the process of establishing an optogenetic approach tailored to a given research hypothesis in the field of neuroscience.

Rhodopsin biosynthesismedicine.anatomical_structureComputer scienceCellmedicineOptogeneticsNeuroscience
researchProduct

Optogenetic Modulation of a Minor Fraction of Parvalbumin-Positive Interneurons Specifically Affects Spatiotemporal Dynamics of Spontaneous and Senso…

2017

Abstract Parvalbumin (PV) positive interneurons exert strong effects on the neocortical excitatory network, but it remains unclear how they impact the spatiotemporal dynamics of sensory processing in the somatosensory cortex. Here, we characterized the effects of optogenetic inhibition and activation of PV interneurons on spontaneous and sensory-evoked activity in mouse barrel cortex in vivo. Inhibiting PV interneurons led to a broad-spectrum power increase both in spontaneous and sensory-evoked activity. Whisker-evoked responses were significantly increased within 20 ms after stimulus onset during inhibition of PV interneurons, demonstrating high temporal precision of PV-shaped inhibition.…

Male0301 basic medicineTime FactorsCognitive NeurosciencePopulationAction PotentialsMice TransgenicSensory systemOptogeneticsSomatosensory system03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineLateral inhibitionEvoked Potentials SomatosensoryPhysical StimulationparvalbuminmedicineAnimalseducationmouseeducation.field_of_studyinterneuronsbiologyChemistrymusculoskeletal neural and ocular physiologyOriginal ArticlesSomatosensory CortexBarrel cortexMice Inbred C57BLOptogeneticsParvalbumins030104 developmental biologymedicine.anatomical_structureTouch Perceptionnervous systemCerebral cortexconnectivityVibrissaebiology.proteincerebral cortexFemaleMicroelectrodesNeuroscience030217 neurology & neurosurgeryParvalbuminCerebral Cortex
researchProduct

Enhanced network activity despite clinical recovery in experimental neuroinflammation using two-photon calcium imaging

2014

Calcium imagingNeurologyTwo-photon excitation microscopyChemistryImmunologyImmunology and AllergyNeurology (clinical)NeuroscienceNetwork activityNeuroinflammationJournal of Neuroimmunology
researchProduct

Neuronal activity triggers uptake of hematopoietic extracellular vesicles in vivo

2019

Communication with the hematopoietic system is a vital component of regulating brain function in health and disease. Traditionally, the major routes considered for this neuroimmune communication are by individual molecules such as cytokines carried by blood, by neural transmission, or, in more severe pathologies, by the entry of peripheral immune cells into the brain. In addition, functional mRNA from peripheral blood can be directly transferred to neurons via extracellular vesicles (EVs), but the parameters that determine their uptake are unknown. Using varied animal models that stimulate neuronal activity by peripheral inflammation, optogenetics, and selective proteasome inhibition of dop…

LipopolysaccharidesMaleGene ExpressionStimulationHippocampusBiochemistryStereotaxic Techniques0302 clinical medicineShort ReportsAnimal CellsMedicine and Health SciencesPremovement neuronal activityBiology (General)Routes of AdministrationNeurons0303 health sciencesBrain MappingKainic AcidBrainAnimal ModelsPeripheralCell biologyHaematopoiesisBioassays and Physiological AnalysisExperimental Organism SystemsHippocampus ; Yellow flourescent protein ; Intravenous injections ; Marker genes ; Gene expression ; Neurons ; Microglial cells ; OptogeneticsFemaleCellular TypesSignal TransductionProteasome Endopeptidase ComplexQH301-705.5Yellow Fluorescent ProteinMice TransgenicGlial CellsMouse ModelsStimulus (physiology)BiologyResearch and Analysis Methods03 medical and health sciencesExtracellular VesiclesImmune systemModel OrganismsIn vivoIntravenous InjectionsGeneticsAnimalsddc:610Molecular Biology TechniquesMolecular BiologyMicroglial Cells030304 developmental biologyInflammationPharmacologyMessenger RNABlood CellsUbiquitinDopaminergic NeuronsBiology and Life SciencesProteinsMarker GenesCell BiologyNeurophysiological AnalysisOptogeneticsLuminescent ProteinsCellular NeuroscienceAnimal Studies030217 neurology & neurosurgeryNeuroscience
researchProduct

A multi-scale approach for testing and detecting peaks in time series

2020

An approach is presented that combines a statistical test for peak detection with the estimation of peak positions in time series. Motivated by empirical observations in neuronal recordings, we aim at investigating peaks of different heights and widths. We use a moving window approach to compare the differences of estimated slope coefficients of local regression models. We combine multiple windows and use the global maximum of all different processes as a test statistic. After rejection, a multiple filter algorithm combines peak positions estimated from multiple windows. Analysing neuronal activity recorded in anaesthetized mice, the procedure could identify significant differences between …

Statistics and Probabilitypeak detection ; multi-scale ; linear regression ; neuronal ensembles ; Brain statesSeries (mathematics)Scale (ratio)business.industry05 social sciencesPattern recognition01 natural sciencesPeak detection010104 statistics & probabilityBrain state0502 economics and businessLinear regressionArtificial intelligence0101 mathematicsStatistics Probability and Uncertaintybusiness050205 econometrics Statistical hypothesis testingMathematics
researchProduct

Intrahippocampal transplantation of mesenchymal stromal cells promotes neuroplasticity

2012

Multipotent mesenchymal stromal cells (MSC) secrete soluble factors that stimulate the surrounding microenvironment. Such paracrine effects might underlie the potential benefits of many stem cell therapies. We tested the hypothesis that MSC are able to enhance intrinsic cellular plasticity in the adult rat hippocampus.Rat bone marrow-derived MSC were labeled with very small superparamagnetic iron oxide particles (VSOP), which allowed for non-invasive graft localization by magnetic resonance imaging (MRI). Moreover, MSC were transduced with lentiviral vectors to express the green fluorescent protein (GFP). The effects of bilateral MSC transplantation on hippocampal cellular plasticity were a…

Cancer ResearchCell SurvivalImmunologyCell- and Tissue-Based TherapyBone Marrow CellsCitalopramHippocampal formationBiologyMesenchymal Stem Cell TransplantationFerric CompoundsHippocampusGreen fluorescent proteinParacrine signallingAnimalsImmunology and AllergyGenetics (clinical)Cell ProliferationTransplantationNeuronal PlasticityCell growthMesenchymal stem cellNeurogenesisMesenchymal Stem CellsCell BiologyAnatomyMagnetic Resonance ImagingRatsCell biologyTransplantationOncologyStem cellCytotherapy
researchProduct

An Intracortical Implantable Brain-Computer Interface for Telemetric Real-Time Recording and Manipulation of Neuronal Circuits for Closed-Loop Interv…

2021

Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the targe…

Computer sciencestereotactic radiosurgeryLocal field potentialElectroencephalographylcsh:RC321-57103 medical and health sciencesBehavioral Neuroscience0302 clinical medicineTelemetrymedicinePremovement neuronal activityGöttingen minipigEEGlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryBiological Psychiatry030304 developmental biologyBrain–computer interfaceOriginal Research0303 health sciencesclosed-loopmedicine.diagnostic_testbusiness.industryanimal modelbrain-machine (computer) interfaceMultielectrode arrayelectrophysiologyElectrophysiologyPsychiatry and Mental healthVisual cortexmedicine.anatomical_structureNeuropsychology and Physiological PsychologyNeurologyneuromodulationelectrophysiology ; Göttingen minipig ; neuromodulation ; brain-machine (computer) interface ; animal model ; EEG ; stereotactic radiosurgery ; closed-loopbusiness030217 neurology & neurosurgeryComputer hardwareNeuroscienceFrontiers in Human Neuroscience
researchProduct

Assessing sensory versus optogenetic network activation by combining (o)fMRI with optical Ca2+ recordings

2016

Encoding of sensory inputs in the cortex is characterized by sparse neuronal network activation. Optogenetic stimulation has previously been combined with fMRI (ofMRI) to probe functional networks. However, for a quantitative optogenetic probing of sensory-driven sparse network activation, the level of similarity between sensory and optogenetic network activation needs to be explored. Here, we complement ofMRI with optic fiber-based population Ca2+ recordings for a region-specific readout of neuronal spiking activity in rat brain. Comparing Ca2+ responses to the blood oxygenation level-dependent signal upon sensory stimulation with increasing frequencies showed adaptation of Ca2+ transient…

0301 basic medicineGenetic VectorsPopulationOptogenetic fMRIChannelrhodopsinSensory systemStimulationOptogeneticsSomatosensory system03 medical and health sciences0302 clinical medicineChannelrhodopsinsTransduction GeneticBiological neural networkAnimalseducationEvoked PotentialsOptical FibersNeuronseducation.field_of_studyAniline CompoundsSensory stimulation therapyChemistrySomatosensory CortexOriginal Articlesoptical neurophysiologyFluoresceinsMagnetic Resonance ImagingRats Inbred F344calcium recordingsOptogeneticsOxygen030104 developmental biologyMicroscopy FluorescenceNeurologylight propagationCalciumFemalesparse network activationNeurology (clinical)Cardiology and Cardiovascular MedicineNeurosciencePhotic Stimulation030217 neurology & neurosurgeryJournal of Cerebral Blood Flow & Metabolism
researchProduct

Molecular cause and functional impact of altered synaptic lipid signaling due to a prg‐1 gene SNP

2015

Loss of plasticity-related gene 1 (PRG-1), which regulates synaptic phospholipid signaling, leads to hyperexcitability via increased glutamate release altering excitation/inhibition (E/I) balance in cortical networks. A recently reported SNP in prg-1 (R345T/ mutPRG-1) affects ~5 million European and US citizens in a monoallelic variant. Our studies show that this mutation leads to a loss-of-PRG-1 function at the synapse due to its inability to control lysophosphatidic acid (LPA) levels via a cellular uptake mechanism which appears to depend on proper glycosylation altered by this SNP. PRG-1 +/ mice, which are animal correlates of human PRG-1 +/mut carriers, showed an altered cortical networ…

0301 basic medicineGeneticseducation.field_of_studySensory gatingPopulationGlutamate receptorLipid signalingBiologyCell biologySynapse03 medical and health scienceschemistry.chemical_compound030104 developmental biology0302 clinical medicinemedicine.anatomical_structurechemistryLysophosphatidic acidmedicineMolecular MedicineSignal transductionAutotaxineducation030217 neurology & neurosurgeryEMBO Molecular Medicine
researchProduct

Quality-preserving low-cost probabilistic 3D denoising with applications to Computed Tomography

2021

AbstractWe propose a pipeline for a synthetic generation of personalized Computer Tomography (CT) images, with a radiation exposure evaluation and a lifetime attributable risk (LAR) assessment. We perform a patient-specific performance evaluation for a broad range of denoising algorithms (including the most popular Deep Learning denoising approaches, wavelets-based methods, methods based on Mumford-Shah denoising etc.), focusing both on accessing the capability to reduce the patient-specific CT-induced LAR and on computational cost scalability. We introduce a parallel probabilistic Mumford-Shah denoising model (PMS), showing that it markedly-outperforms the compared common denoising methods…

Computer sciencebusiness.industryGaussianPipeline (computing)Deep learningNoise reductionProbabilistic logicPattern recognitionReduction (complexity)symbols.namesakeWaveletScalabilitysymbolsArtificial intelligencebusiness
researchProduct

Imaging of VSOP labeled stem cells in agarose phantoms with susceptibility weighted and T2* weighted MR Imaging at 3T: determination of the detection…

2013

Objectives This study aimed to evaluate the detectability of stem cells labeled with very small iron oxide particles (VSOP) at 3T with susceptibility weighted (SWI) and T2* weighted imaging as a methodological basis for subsequent examinations in a large animal stroke model (sheep). Materials and Methods We examined ovine mesenchymal stem cells labeled with VSOP in agarose layer phantoms. The experiments were performed in 2 different groups, with quantities of 0–100,000 labeled cells per layer. 15 different SWI- and T2*-weighted sequences and 3 RF coils were used. All measurements were carried out on a clinical 3T MRI. Images of Group A were analyzed by four radiologists blinded for the num…

medicine.medical_treatmentAnimal Typeslcsh:MedicineLarge AnimalsSignalFerric CompoundsDiagnostic Radiologychemistry.chemical_compoundModel OrganismsLimit of DetectionMolecular Cell BiologymedicineAnimalsParticle Sizelcsh:ScienceBiologyDetection limitMultidisciplinarySheepmedicine.diagnostic_testStaining and Labelingbusiness.industryChemistryPhantoms ImagingSepharoseStem Cellslcsh:RMagnetic resonance imagingMesenchymal Stem CellsStem-cell therapyVSOPAnimal ModelsMagnetic Resonance ImagingStrokeDisease Models AnimalAgaroseMedicinelcsh:QVeterinary ScienceStem cellCellular TypesT2 weightedNuclear medicinebusinessRadiologyBiomedical engineeringStem Cell TransplantationResearch ArticleDevelopmental BiologyPloS one
researchProduct

Author response: Cortex-wide BOLD fMRI activity reflects locally-recorded slow oscillation-associated calcium waves

2017

0301 basic medicinePhysics03 medical and health sciences030104 developmental biologymedicine.anatomical_structureCortex (anatomy)Oscillation (cell signaling)medicineBold fmriCalcium WavesNeuroscience
researchProduct

Astrocytic Calcium Waves Signal Brain Injury to Neural Stem and Progenitor Cells

2017

Summary Brain injuries, such as stroke or trauma, induce neural stem cells in the subventricular zone (SVZ) to a neurogenic response. Very little is known about the molecular cues that signal tissue damage, even over large distances, to the SVZ. Based on our analysis of gene expression patterns in the SVZ, 48 hr after an ischemic lesion caused by middle cerebral artery occlusion, we hypothesized that the presence of an injury might be transmitted by an astrocytic traveling calcium wave rather than by diffusible factors or hypoxia. Using a newly established in vitro system we show that calcium waves induced in an astrocytic monolayer spread to neural stem and progenitor cells and increase th…

Male0301 basic medicineTime FactorsNotch signaling pathwaySubventricular zonechemistry.chemical_elementBiologyCalciumcalcium signalingBiochemistryArticleMice03 medical and health sciencesAdenosine TriphosphateNeural Stem CellsDownregulation and upregulationCell MovementGeneticsmedicineAnimalsCell Self RenewalProgenitor celllcsh:QH301-705.5Cells CulturedCalcium signalinglcsh:R5-920Gene Expression ProfilingastrocytesGap JunctionsCell DifferentiationCell BiologyAnatomyHypoxia (medical)strokeNeural stem cellDisease Models Animal030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)chemistryBrain InjuriesCalciummedicine.symptomFunction and Dysfunction of the Nervous Systemlcsh:Medicine (General)TranscriptomeNeurosciencenotchDevelopmental BiologyStem Cell Reports
researchProduct