0000000000124492

AUTHOR

Nick Träger

showing 5 related works from this author

Erratum: “Nanoscale x-ray imaging of spin dynamics in yttrium iron garnet” [J. Appl. Phys. 126, 173909 (2019)]

2021

chemistry.chemical_compoundMaterials scienceCondensed matter physicschemistrySpin dynamicsX-rayYttrium iron garnetGeneral Physics and Astronomyddc:530Nanoscopic scaleJournal of Applied Physics
researchProduct

Nanoscale X-Ray Imaging of Spin Dynamics in Yttrium Iron Garnet

2019

Time-resolved scanning transmission x-ray microscopy (TR-STXM) has been used for the direct imaging of spin wave dynamics in thin film yttrium iron garnet (YIG) with spatial resolution in the sub 100 nm range. Application of this x-ray transmission technique to single crystalline garnet films was achieved by extracting a lamella (13x5x0.185 $\mathrm{\mu m^3}$) of liquid phase epitaxy grown YIG thin film out of a gadolinium gallium garnet substrate. Spin waves in the sample were measured along the Damon-Eshbach and backward volume directions of propagation at gigahertz frequencies and with wavelengths in a range between 100~nm and 10~$\mathrm{\mu}$m. The results were compared to theoretical …

Yttrium iron garnetFOS: Physical sciencesGeneral Physics and AstronomyLarge scale facilities for research with photons neutrons and ions02 engineering and technologySubstrate (electronics)Epitaxy01 natural scienceschemistry.chemical_compoundCondensed Matter::Materials ScienceSpin waveDispersion relationMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesThin film010302 applied physicsPhysicsMicroscopyCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsGadolinium gallium garnetYIG021001 nanoscience & nanotechnologyWavelengthchemistryMagnonics0210 nano-technology
researchProduct

Ptychographic imaging and micromagnetic modeling of thermal melting of nanoscale magnetic domains in antidot lattices

2020

CA extern Antidot lattices are potential candidates to act as bit patterned media for data storage as they are able to trap nanoscale magnetic domains between two adjacent holes. Here, we demonstrate the combination of micromagnetic modeling and x-ray microscopy. Detailed simulation of these systems can only be achieved by micromagnetic modeling that takes thermal effects into account. For this purpose, a Landau-Lifshitz-Bloch approach is used here. The calculated melting of magnetic domains within the antidot lattice is reproduced experimentally by x-ray microscopy. Furthermore, we compare conventional scanning transmission x-ray microscopy with resolution enhanced ptychography. Hence, we …

010302 applied physicsMaterials scienceCondensed matter physicsMagnetic domainbusiness.industryGeneral Physics and Astronomy02 engineering and technologyPhysik (inkl. Astronomie)021001 nanoscience & nanotechnology01 natural sciencesPtychographylcsh:QC1-999Lattice (order)0103 physical sciencesComputer data storagePatterned mediaThermalMicroscopyddc:5300210 nano-technologybusinessNanoscopic scalelcsh:PhysicsAIP Advances
researchProduct

Direct observation of coherent magnons with suboptical wavelengths in a single crystalline ferrimagnetic insulator

2019

In the field of magnetism, spin waves are a subject of great interest for fundamental and application-oriented research. Time-resolved scanning transmission x-ray microscopy, a technique that allows for direct spin-wave imaging below the optical resolution limit, is usually limited to thin layers deposited on x-ray transparent membranes. Here, the authors report on a preparation routine that makes single-crystalline materials accessible to this powerful technique. The latter is subsequently implemented on the ferrimagnetic insulator yttrium iron garnet, where spin waves down to 100-nm wavelength are observed.

Thin layersMaterials sciencebusiness.industryMagnetismMagnonYttrium iron garnetLarge scale facilities for research with photons neutrons and ions02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter::Materials ScienceWavelengthchemistry.chemical_compoundchemistrySpin waveFerrimagnetism0103 physical sciencesMicroscopyOptoelectronics010306 general physics0210 nano-technologybusiness
researchProduct

Direct imaging of high frequency multimode spin wave propagation in cobalt iron waveguides using X ray microscopy beyond 10 GHz

2020

MagnonicsMulti-mode optical fiberMaterials sciencebusiness.industryMagnetismX-raychemistry.chemical_elementLarge scale facilities for research with photons neutrons and ionsCondensed Matter PhysicschemistrySpin waveMicroscopyOptoelectronicsGeneral Materials SciencebusinessNanoscopic scaleCobalt
researchProduct