0000000000124572
AUTHOR
Shigeru Kubono
New neutron-deficient isotopes from $^{78}$Kr fragmentation
In an experiment with the BigRIPS separator at the RIKEN Nishina Center, the fragmentation of a $^{78}$Kr beam allowed the observation of new neutron-deficient isotopes at the proton drip-line. Clean identification spectra could be produced and $^{63}$Se, $^{67}$Kr, and $^{68}$Kr were identified for the first time. In addition, $^{59}$Ge was also observed. Three of these isotopes, $^{59}$Ge, $^{63}$Se, and $^{67}$Kr, are potential candidates for ground-state two-proton radioactivity. In addition, the isotopes $^{58}$Ge, $^{62}$Se, and $^{66}$Kr were also sought but without success. The present experiment also allowed the determination of production cross sections for some of the most exotic…
Studying the Exotic Decay $^{70}Kr$ $\rightarrow$ $^{70}Br$
Acta physica Polonica / B 51(3), 587 (2020). doi:10.5506/APhysPolB.51.587
Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei
Beta-delayed neutron emission (Beta-n) is a form of radioactive decay in which an electron, an anti-neutrino and one or more neutrons are emitted. This process arises if the energy window of the decay Q_Beta is greater than the neutron separation energy S n of the daughter. The probability in each decay of emitting neutrons is called the Pn value. This form of decay plays a key role in the synthesis of chemical elements in the Universe via the rapid neutron capture process, or r-process. The r-process proceeds far from the valley of nuclear stability, and leads to very neutron-rich nuclei that then decay to the line of stability. Most of these nuclei are ßn emitters. The initial abundance d…
Two-Proton Radioactivity ofKr67
In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from 67Kr. At the same time, no evidence for 2p emission of 59Ge and 63Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to 67Kr as being the best new candidate among the three for two-proton radioactivity. 67Kr is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of 67Kr is 7.4(30) ms.
β decay of the very neutron-deficient Ge60 and Ge62 nuclei
We report here the results of a study of the $\beta$ decay of the proton-rich Ge isotopes, $^{60}$Ge and $^{62}$Ge, produced in an experiment at the RIKEN Nishina Center. We have improved our knowledge of the half-lives of $^{62}$Ge (73.5(1) ms), $^{60}$Ge (25.0(3) ms) and its daughter nucleus, $^{60}$Ga (69.4(2) ms). We measured individual $\beta$-delayed proton and $\gamma$ emissions and their related branching ratios. Decay schemes and absolute Fermi and Gamow-Teller transition strengths have been determined. The mass excesses of the nuclei under study have been deduced. A total $\beta$-delayed proton-emission branching ratio of 67(3)% has been obtained for $^{60}$Ge. New information has…
The BRIKEN Project: Extensive Measurements of $\beta $-delayed Neutron Emitters for the Astrophysical r Process
An ambitious program to measure decay properties, primarily β-delayed neutron emission probabilities and half-lives, for a significant number of nuclei near or on the path of the rapid neutron capture process, has been launched at the RIKEN Nishina Center. We give here an overview of the status of the project.
Spectroscopy of Cd98 by two-nucleon removal from In100
Low-lying states of Cd-98 have been populated by the two-nucleon removal reaction (In-100, Cd-98+gamma) and studied using in-beam gamma-ray spectroscopy at the Radioactive Isotope Beam Factory at RIKEN. Two new gamma transitions were identified and assigned as decays from a previously unknown state. This state is suggested to be based on a pi 1g(/9/2)(-1)2p(1/2)(-2) configuration with J(pi) = 5(-). The present observation extends the systematics of the excitation energies of the first 5(-) state in N = 50 isotones toward Sn-100. The determined energy of the 5(- )state in Cd-98 continues a smooth trend along the N = 50 isotones. The systematics are compared with shell-model calculations in d…
Persistence of the Z=28 shell gap in A=75 isobars: Identification of a possible (1/2−) μs isomer in Co75 and β decay to Ni75
Background: The evolution of shell structure around doubly-magic exotic nuclei is of great interest in nuclear physics and astrophysics. In the `south-west' region of $^{78}$Ni, the development of deformation might trigger a major shift in our understanding of explosive nucleosynthesis. To this end, new spectroscopic information on key close-lying nuclei is very valuable. Purpose: We intend to measure the isomeric and $\beta$ decay of $^{75}$Co, with one proton- and two neutron-holes relative to $^{78}$Ni, to access new nuclear structure information in $^{75}$Co and its $\beta$-decay daughters $^{75}$Ni and $^{74}$Ni. Methods: The nucleus $^{75}$Co is produced in relativistic in-flight fiss…
β-delayed neutron emission of r-process nuclei at the N = 82 shell closure
This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. O.H, T.D, P.J.W, C.G.B, C.J.G and D.K would like to thank STFC, UK for support. This research was sponsored in part by the Office of Nuclear Physics, U.S. Department of Energy under Award No. DE-FG02-96ER40983 (UTK) and DEAC05-00OR22725 (ORNL), and by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through DOE Award No. DENA0002132. This work was supported by National Science Foundation under Grants No. PHY-1430152 (JINA Center for the Evolution of the Elements), No. PHY-1565546 (NSCL), and No. PHY-1714153 (Central Michigan Uni…
Gamow-Teller Transitions in Proton Rich Exotic pf-shell Nuclei Deduced from Mirror Transitions
The rp‐process nucleosynthesis proceeds through nuclei near the proton drip‐line, in which Gamow‐Teller (GT) transitions starting from unstable pf‐shell nuclei play important roles. In the β‐decay study of these nuclei, half‐lives can be measured rather accurately. On the other hand, in the high‐resolution (3He, t) charge‐exchange reactions on mirror nuclei, individual GT transitions can be studied up to high excitations. For the accurate study of the GT transition strengths in the A = 52, T = 2, system, we compare and combine the β‐decay study of the proton‐rich nucleus 52Ni and the 52Cr(3He, t) measurement assuming the isospin symmetry of the Tz = ±2→±1 transitions.