0000000000124658

AUTHOR

Anna Oleynik

Spatially localized solutions of the Hammerstein equation with sigmoid type of nonlinearity

Abstract We study the existence of fixed points to a parameterized Hammerstein operator H β , β ∈ ( 0 , ∞ ] , with sigmoid type of nonlinearity. The parameter β ∞ indicates the steepness of the slope of a nonlinear smooth sigmoid function and the limit case β = ∞ corresponds to a discontinuous unit step function. We prove that spatially localized solutions to the fixed point problem for large β exist and can be approximated by the fixed points of H ∞ . These results are of a high importance in biological applications where one often approximates the smooth sigmoid by discontinuous unit step function. Moreover, in order to achieve even better approximation than a solution of the limit proble…

research product

Existence and stability of periodic solutions in a neural field equation

We study the existence and linear stability of stationary periodic solutions to a neural field model, an intergo-differential equation of the Hammerstein type. Under the assumption that the activation function is a discontinuous step function and the kernel is decaying sufficiently fast, we formulate necessary and sufficient conditions for the existence of a special class of solutions that we call 1-bump periodic solutions. We then analyze the stability of these solutions by studying the spectrum of the Frechet derivative of the corresponding Hammerstein operator. We prove that the spectrum of this operator agrees up to zero with the spectrum of a block Laurent operator. We show that the no…

research product