0000000000125331

AUTHOR

Pekka Pankka

0000-0002-0695-0555

showing 9 related works from this author

Rescaling principle for isolated essential singularities of quasiregular mappings

2012

We establish a rescaling theorem for isolated essential singularities of quasiregular mappings. As a consequence we show that the class of closed manifolds receiving a quasiregular mapping from a punctured unit ball with an essential singularity at the origin is exactly the class of closed quasiregularly elliptic manifolds, that is, closed manifolds receiving a non-constant quasiregular mapping from a Euclidean space.

Unit sphereEssential singularityClass (set theory)Pure mathematicsmath.CVMathematics - Complex VariablesMathematics::Complex VariablesEuclidean spacemath.MGApplied MathematicsGeneral MathematicsPrimary 30C65 Secondary 53C21 32H02010102 general mathematics16. Peace & justiceMathematics::Geometric Topology01 natural sciencesRescaling010101 applied mathematicsQuasiregular mappingMathematics - Metric GeometryIsolated essential singularities111 MathematicsGravitational singularity0101 mathematicsMathematicsProceedings of the American Mathematical Society
researchProduct

Free vs. Locally Free Kleinian Groups

2015

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < < 1 are free. On the other hand we construct for any ε > > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < < 1 + + ε.

[ MATH.MATH-GT ] Mathematics [math]/Geometric Topology [math.GT]0209 industrial biotechnologyPure mathematicsMathematics::Dynamical SystemsGeneral MathematicsMathematics::General TopologyGroup Theory (math.GR)02 engineering and technology01 natural sciencesMathematics - Geometric Topology020901 industrial engineering & automationDimension (vector space)[MATH.MATH-GT]Mathematics [math]/Geometric Topology [math.GT]FOS: MathematicsLimit (mathematics)topologia0101 mathematicsMathematicsApplied Mathematics010102 general mathematicsryhmäteoriaGeometric Topology (math.GT)16. Peace & justiceMathematics::Geometric TopologyKleinian groupsCantor setTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESHausdorff dimensionComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLimit setMathematics - Group Theory
researchProduct

Quasiregular ellipticity of open and generalized manifolds

2014

We study the existence of geometrically controlled branched covering maps from \(\mathbb R^3\) to open \(3\)-manifolds or to decomposition spaces \(\mathbb {S}^3/G\), and from \(\mathbb {S}^3/G\) to \(\mathbb {S}^3\).

Mathematics - Complex VariablesApplied Mathematics010102 general mathematicsquasiregular mappingsdecomposition spacesGeometric Topology (math.GT)Metric Geometry (math.MG)01 natural sciencesCombinatoricsMathematics - Geometric Topologysemmes metricsComputational Theory and MathematicsMathematics - Metric Geometryquasiregular ellipticity0103 physical sciencesFOS: Mathematics30C65 (Primary) 30L10 (Secondary)010307 mathematical physicsBranched covering0101 mathematicsComplex Variables (math.CV)AnalysisMathematics
researchProduct

Geometry and quasisymmetric parametrization of Semmes spaces

2014

We consider decomposition spaces R/G that are manifold factors and admit defining sequences consisting of cubes-with-handles. Metrics on R/G constructed via modular embeddings of R/G into Euclidean spaces promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R/G×R by R for any m ≥ 0 imposes quantitative topological constraints, in terms of the circulation and the growth of the cubes-with-handles, to the defining sequences for R/G. We give a necessary condition and a sufficient condition for the existence of parametrization. The necessary condition answers negatively a question of Heinonen and Semmes on quasisymmetric parametrizabi…

General Mathematicsta111010102 general mathematicsGeometry01 natural sciencesManifoldCombinatoricsMetric space0103 physical sciencesEuclidean geometry010307 mathematical physics0101 mathematicsParametrizationTopology (chemistry)MathematicsRevista Matemática Iberoamericana
researchProduct

Stoïlow’s theorem revisited

2020

Stoilow's theorem from 1928 states that a continuous, open, and light map between surfaces is a discrete map with a discrete branch set. This result implies that such maps between orientable surfaces are locally modeled by power maps z -> z(k) and admit a holomorphic factorization. The purpose of this expository article is to give a proof of this classical theorem having readers in mind that are interested in continuous, open and discrete maps. (C) 2019 Elsevier GmbH. All rights reserved. Peer reviewed

continuous open and discrete mappingsPure mathematicsContinuous open and light mappingscontinuous open and light mappingsFundamental theoremPicard–Lindelöf theoremGeneral Mathematics010102 general mathematicsRamsey theoryStoilow's theorem16. Peace & justice01 natural sciencesSqueeze theoremfunktioteoriaFactorizationStoilow’s theoremFundamental theorem of calculusContinuous open and discrete mappings111 Mathematics0101 mathematicsBrouwer fixed-point theoremMathematicsCarlson's theoremExpositiones Mathematicae
researchProduct

Bing meets Sobolev

2019

We show that, for each $1\le p < 2$, there exists a wild involution $\mathbb S^3\to \mathbb S^3$ in the Sobolev class $W^{1,p}(\mathbb S^3,\mathbb S^3)$.

Pure mathematicsClass (set theory)Sobolev homeomorphismGeneral Mathematics010102 general mathematicsFixed point setMetric Geometry (math.MG)Geometric Topology (math.GT)SPACES01 natural sciencesSobolev spaceMathematics - Geometric TopologyMathematics - Metric GeometryFOS: Mathematicswild involution111 Mathematics57S25 57R12 57N45 46E35 30C65THEOREMInvolution (philosophy)0101 mathematicsMathematicsAPPROXIMATION
researchProduct

Sharpness of Rickman’s Picard theorem in all dimensions

2015

We show that given \({n \geqslant 3}\), \({q \geqslant 1}\), and a finite set \({\{y_1, \ldots, y_q \}}\) in \({\mathbb{R}^n}\) there exists a quasiregular mapping \({\mathbb{R}^n\to \mathbb{R}^n}\) omitting exactly points \({y_1, \ldots, y_q}\).

Distortion (mathematics)Discrete mathematicsRickman’s Picard theoremGeneral Mathematicsquasiregular mappingsFinite setPicard theoremMathematics30C65
researchProduct

Equilibrium measures for uniformly quasiregular dynamics

2012

We establish the existence and fundamental properties of the equilibrium measure in uniformly quasiregular dynamics. We show that a uniformly quasiregular endomorphism $f$ of degree at least 2 on a closed Riemannian manifold admits an equilibrium measure $\mu_f$, which is balanced and invariant under $f$ and non-atomic, and whose support agrees with the Julia set of $f$. Furthermore we show that $f$ is strongly mixing with respect to the measure $\mu_f$. We also characterize the measure $\mu_f$ using an approximation property by iterated pullbacks of points under $f$ up to a set of exceptional initial points of Hausdorff dimension at most $n-1$. These dynamical mixing and approximation resu…

Pure mathematicsEndomorphismMathematics - Complex VariablesMathematics::Complex VariablesGeneral Mathematicsta111mappings010102 general mathematicsEquidistribution theoremRiemannian manifoldintegrability01 natural sciencesJulia setMeasure (mathematics)manifoldsPotential theory30C65 (Primary) 37F10 30D05 (Secondary)Iterated functionHausdorff dimension0103 physical sciences010307 mathematical physicsMathematics - Dynamical Systems0101 mathematicsMathematicsJournal of the London Mathematical Society
researchProduct

Geometry and quasisymmetric parametrization of Semmes spaces

2011

We consider decomposition spaces R 3 /G that are manifold factors and admit defining sequences consisting of cubes-with-handles of finite type. Metrics on R 3 /G constructed via modular embeddings of R 3 /G into a Euclidean space promote the controlled topology to a controlled geometry. The quasisymmetric parametrizability of the metric space R 3 /G×R m by R 3+m for any m ≥ 0 imposes quantitative topological constraints, in terms of the circulation and the growth of the cubes-with-handles, on the defining sequences for R 3 /G. We give a necessary condition and a sufficient condition for the existence of such a parametrization. The necessary condition answers negatively a question of Heinone…

decomposition spaceMathematics - Geometric TopologyquasispherequasisymmetryMathematics - Metric GeometryFOS: Mathematics30L10 30L05 30C65parametrizationMetric Geometry (math.MG)Geometric Topology (math.GT)
researchProduct