0000000000125429
AUTHOR
Pauliina Lehtolainen
Enhanced Gene Delivery by Avidin-Displaying Baculovirus
Flexible alteration of virus surface properties would be beneficial for enhanced and targeted gene delivery. A useful approach could be based on a high-affinity receptor–ligand pair, such as avidin and biotin. In this study, we have constructed an avidin-displaying baculovirus, Baavi. Avidin display was expected to enhance cell transduction due to the high positive charge of avidin in physiological pH and to provide a binding site for covering the virus with desired biotinylated ligands. Successful incorporation of avidin on the virus envelope was detected by immunoblotting and electron microscopy. Multiple biotin-binding sites per virus were detected with fluorescence-correlation spectrosc…
Baculovirus capsid display: a novel tool for transduction imaging
Baculoviruses are enveloped insect viruses that can carry large quantities of foreign DNA in their genome. Baculoviruses have proved to be very promising gene therapy vectors but little is known about their transduction mechanisms in mammalian cells. We show in this study that Autographa californica multiple nuclear polyhedrosis virus capsid is compatible with the incorporation of desired proteins in large quantities. Fusions can be made to the N-terminus or C-terminus of the major capsid protein vp39 without compromising the viral titer or functionality. As an example of the baculovirus capsid display we show a tracking of the baculovirus transduction in mammalian cells by an enhanced gree…
Cloning and characterization of Scavidin, a fusion protein for the targeted delivery of biotinylated molecules.
We have constructed a novel fusion protein "Scavidin" consisting of the macrophage scavenger receptor class A and avidin. The Scavidin fusion protein is transported to plasma membranes where the avidin portion of the fusion protein binds biotin with high affinity and forms the basis for the targeted delivery of biotinylated molecules. Subcellular fractionation analysis, immunostaining, and electron microscopy demonstrated endosomal localization of the fusion protein. According to pulse-labeling and cross-linking studies Scavidin is found as monomers (55 kDa), dimers, and multimers, of which the 220-kDa form was the most abundant. The biotin binding capacity and active endocytosis of the bio…