0000000000125618

AUTHOR

Emerick Lorent

showing 2 related works from this author

Telecom to mid-infrared supercontinuum generation in a silicon germanium waveguide

2015

We report the first demonstration of broadband supercontinuum generation in silicon-germanium waveguides. Upon propagation of ultra-short femtosecond pulses in a 3-cm-long waveguide, the broadening extended from 1.455µm to 2.788µm (at the −30-dB point).

Materials scienceSilicon photonicsbusiness.industryMid infraredchemistry.chemical_elementWaveguide (optics)SupercontinuumSilicon-germaniumErbiumchemistry.chemical_compoundOpticschemistryBroadbandFemtosecondOptoelectronicsbusiness
researchProduct

Broadband telecom to mid-infrared supercontinuum generation in a dispersion-engineered silicon germanium waveguide.

2015

We demonstrate broadband supercontinuum generation (SCG) in a dispersion-engineered silicon-germanium waveguide. The 3 cm long waveguide is pumped by femtosecond pulses at 2.4 μm, and the generated supercontinuum extends from 1.45 to 2.79 μm (at the −30  dB point). The broadening is mainly driven by the generation of a dispersive wave in the 1.5–1.8 μm region and soliton fission. The SCG was modeled numerically, and excellent agreement with the experimental results was obtained.

Waveguide (electromagnetism)Materials scienceFissionbusiness.industryPhysics::OpticsSoliton (optics)Atomic and Molecular Physics and OpticsSupercontinuumSilicon-germaniumchemistry.chemical_compoundOpticschemistryDispersion (optics)BroadbandFemtosecondbusinessTelecommunicationsNonlinear Sciences::Pattern Formation and SolitonsOptics letters
researchProduct