0000000000125638
AUTHOR
Esmeralda Valiente
Microbial and histopathological study of the vibriosis caused by Vibrio vulnificus serovar E in eels: The metalloprotease Vvp is not an essential lesional factor
Vibrio vulnificus biotype 2 serovar E (Bt2-serE) is a zoonotic pathogen that causes a haemorrhagic septicaemia in eels, called warm water vibriosis. The main objective of the present work was to study the onset of the eel vibriosis from the microbiological and histopathological viewpoint, as well as to ascertain the role of the protease Vvp as a lesional factor by comparing the histopathological lesions caused by the wild strain and its vvp deficient derivative. The wild-type strain was observed to attach to the gills, where it multiplied following saturation dynamics, subsequently invading the blood stream and reaching the internal organs. Here it reached population sizes that are notably …
Role of the metalloprotease Vvp and the virulence plasmid pR99 of Vibrio vulnificus serovar E in surface colonization and fish virulence.
The virulence for eels of Vibrio vulnificus biotype 2 serovar E (VSE) is conferred by a plasmid that codifies ability to survive in eel serum and cause septicaemia. To find out whether the plasmid and the selected chromosomal gene vvp plays a role in the initial steps of infection, the VSE strain CECT4999, the cured strain CT218 and the Vvp-deficient mutant CT201 (obtained in this work by allelic exchange) were used in colonization and virulence experiments. The eel avirulent biotype 1 (BT1) strain YJ016, whose genome has been sequenced, was used for comparative purposes. The global results demonstrate that the plasmid does not play a significant role in surface colonization because (i) CEC…
A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid.
ABSTRACT Strains of Vibrio vulnificus , a marine bacterial species pathogenic for humans and eels, are divided into three biotypes, and those virulent for eels are classified as biotype 2. All biotype 2 strains possess one or more plasmids, which have been shown to harbor the biotype 2-specific DNA sequences. In this study we determined the DNA sequences of three biotype 2 plasmids: pR99 (68.4 kbp) in strain CECT4999 and pC4602-1 (56.6 kb) and pC4602-2 (66.9 kb) in strain CECT4602. Plasmid pC4602-2 showed 92% sequence identity with pR99. Curing of pR99 from strain CECT4999 resulted in loss of resistance to eel serum and virulence for eels but had no effect on the virulence for mice, an anim…
A method to diagnose the carrier state of Vibrio vulnificus serovar E in eels: Development and field studies
Abstract The pathogen Vibrio vulnificus serovar E (VSE) has been related to both human infections and to epizootics causing high mortality in brackish water eel farms. To control the spread of the eel vibriosis and prevent VSE transmission to humans we designed and tested a protocol to detect carriers, which involves isolating the pathogen. To identify the organs where VSE persists in survivors we infected eels with different degrees of immunity against the pathogen (non-immune [NI], immune [I, eels vaccinated 1 year before] and freshly vaccinated [V]) by bath challenge. Then, we followed the pathogen survival in selected external and internal organs for 72 h post-infection. VSE was isolate…
Vibrio vulnificus produces quorum sensing signals of the AHL-class
Vibrio vulnificus is an aquatic pathogenic bacterium that can cause vibriosis in humans and fish. The species is subdivided into three biotypes with the fish-virulent strains belonging to biotype 2. The quorum sensing (QS) phenomenon mediated by furanosyl borate diester or autoinducer 2 (AI-2) has been described in human strains of biotype 1, and here we show that the luxS gene which encodes AI-2 is present in all strains of V. vulnificus regardless of origin, biotype or serovar. In this study, we also demonstrate that V. vulnificus produces QS signals of the acylated homoserine lactone (AHL) class (AI-1). AHLs were detected in strains of biotype 1 and 2 from water, fish and human wound inf…
Vibrio vulnificus biotype 2 serovar E gne but not galE is essential for lipopolysaccharide biosynthesis and virulence
ABSTRACT This work aimed to establish the role of gne (encoding UDP-GalNAc 4-epimerase activity) and galE (encoding UDP-Gal-4-epimerase activity) in the biosynthesis of surface polysaccharides, as well as in the virulence for eels and humans of the zoonotic serovar of Vibrio vulnificus biotype 2, serovar E. DNA sequence data revealed that gne and galE are quite homologous within this species (≥90% homology). Mutation in gne of strain CECT4999 increased the surface hydrophobicity, produced deep alterations in the outer membrane architecture, and resulted in noticeable increases in the sensitivity to microcidal peptides (MP), to eel and human sera, and to phagocytosis/opsonophagocytosis. Furt…
A comparative epizootiologic study of the two fish-pathogenic serovars ofVibrio vulnificusbiotype 2
Vibrio vulnificus biotype 2 is subdivided into two main serovars, serovar E, able to infect fish and humans, and serovar A, only virulent for fish. Serovar E emerged in 1976 as the causative agent of a haemorrhagic septicaemia (warm-water vibriosis) affecting eels cultured in brackish water. Serovar A emerged in 2000 in freshwater-cultured eels vaccinated against serovar E, causing warm-water vibriosis with fish showing a haemorrhagic intestine as the main differential sign. The aim of the present work was to compare the disease caused by both serovars in terms of transmission routes, portals of entry and host range. Results of bath, patch-contact and oral-anal challenges demonstrated that …
Role of the virulence plasmid pR99 and the metalloprotease Vvp in resistance of Vibrio vulnificus serovar E to eel innate immunity
Vibrio vulnificus biotype 2 serovar E (VSE) is a bacterial pathogen that produces a haemorrhagic septicaemia called vibriosis in eels. Its ability to grow in blood is conferred by a recently described virulence plasmid [Lee CT, Amaro C, Wu KM, Valiente E, Chang YF, Tsai SF, et al. A common virulence plasmid in biotype 2 Vibrio vulnificus and its dissemination aided by a conjugal plasmid. Journal of Bacteriology, submitted for publication.]. In this study, we analyzed the role of this plasmid together with the role played by the metalloprotease (Vvp) in the interaction between bacteria and eel innate immunity. To this end, we compared and statistically analyzed the differences in resistance …