0000000000125777

AUTHOR

Giorgio Nasillo

The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA

Abstract Silica–PMMA nanocomposites with different silica quantities were prepared by a melt compounding method. The effect of silica amount, in the range 1–5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of transmission electron microscopy (TEM), X-ray diffractometry (XRD), dynamic mechanical analysis (DMA), thermogravimetric analyses (TGA), Fourier-transform infrared spectroscopy (FTIR), 13 C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy ( 13 C{ 1 H} CP-MAS NMR) and measures of proton spin-lattice relaxation time in the rotating frame ( T 1 ρ ( H )), in the laboratory frame ( T 1 ( H )) a…

research product

PMMA-titania nanocomposites: Properties and thermal degradation behavior

Titania nanoparticles were prepared using a solegel method and calcination at 200 and 600 � C in order to obtain anatase and rutile phases, respectively. The obtained powders were used to prepare PMMAe titania nanocomposites by a melt compounding method. The effect of the crystalline phase and the amount of titania, in the range 1e5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of X-ray diffractometry (XRD), transmission electron microscopy (TEM), 13 C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy ( 13 C{ 1 H}CP-MAS NMR), including the measurement of proton spinelattice relaxation time in t…

research product

Effect of the nanotube aspect ratio and surface functionalization on the morphology and properties of multiwalled carbon nanotube polyamide-based fibers

In this study, the effect of the carbon nanotube (CNT) aspect ratio and surface functionalization on the mechanical behavior and morphological changes of polyamide (PA)-based fibers was investigated. Composites were prepared by the melt blending of CNTs with PA, and at a later time, the fibers were prepared by melt spinning and cold drawing. A reinforcement effect was noticed for all of the CNTs samples, and the increase in the mechanical properties and dimensional stability was more pronounced for highly oriented filaments. When the elongational flow was increased, the orientation of CNTs along the fiber direction was observed, but the nanotube alignment was much more difficult for CNTs wi…

research product

Synthesis and characterization of perfluoroalkyl-pyrenes embedded in a polymethylmethacrylate matrix

research product

Streptomyces coelicolor Vesicles: Many Molecules To Be Delivered

ABSTRACT Streptomyces coelicolor is a model organism for the study of Streptomyces, a genus of Gram-positive bacteria that undergoes a complex life cycle and produces a broad repertoire of bioactive metabolites and extracellular enzymes. This study investigated the production and characterization of membrane vesicles (MVs) in liquid cultures of S. coelicolor M145 from a structural and biochemical point of view; this was achieved by combining microscopic, physical and -omics analyses. Two main populations of MVs, with different sizes and cargos, were isolated and purified. S. coelicolor MV cargo was determined to be complex, containing different kinds of proteins and metabolites. In particul…

research product

On the Role of Extensional Flow in Morphology and Property Modifications of MWCNT/Polyamide-Based Fibers

Unfilled and MWCNT-filled PA fibers are prepared and the effect of the extensional flow on their mechanical performance and morphological variations is investigated. Morphological analyses using SEM, TEM, and SAXS suggest a stronger orientation of the MWCNTs along the fiber direction with increasing extensional flow. A particular MWCNT bundle formation in the PA drawn nanocomposite fibers is observed for the first time, and a pull-out of the central nanotube in some bundles is noted. The maintenance of the "shish-kebab" structure upon extensional flow is responsible for the mechanical improvements and dimensional stability in MWCNT-filled PA fibers.

research product

Identifying the Unknown Content of an Ancient Egyptian Sealed Alabaster Vase from Kha and Merit’s Tomb Using Multiple Techniques and Multicomponent Sample Analysis in an Interdisciplinary Applied Chemistry Course

This article highlights the multianalytical study of exuded liquid from an ancient Egyptian sealed alabaster vase by Master's students in an applied chemistry for cultural heritage course. Master students are introduced to the field of Archaeometry that see the collaboration of experts in different areas of research such as conservators, curators of museums, physicists, chemists, etc. The sample is a residue exuded on the linen strip sealing an ancient Egyptian alabaster vase (inventory number S.8448) from the collection of the Museo Egizio in Turin (Italy). The students start to plan the noninvasive investigation by X-ray fluorescence (XRF), transmission electron microscopy (TEM), and ener…

research product

Synthesis of Nd:YAG nanopowder using the citrate method with microwave irradiation

Abstract Nd:YAG nanopowders were prepared using the Pechini process with microwave irradiation ( MWs ). A reference sample was also prepared using conventional heating. XRD pattern analysis showed that nanopowder obtained by means of conventional heating and calcination for 1 h at 900 °C has a structure made up of the garnet phase together with the hexagonal phase that disappeared after two additional hours of thermal treatment. The MWs powder calcined for 1 h consists of the single garnet phase. SAXS data analysis indicated that nanoparticles are characterized by a sharp interface. TEM investigation showed crystalline particles with remarkable agglomeration in both samples, although a more…

research product

Photocatalytic Solar Light H 2 Production by Aqueous Glucose Reforming

research product

Structural Characterization of Zirconia Nanoparticles Prepared by Microwave-Hydrothermal Synthesis

Nanocrystalline zirconia powders have been prepared by microwave-hydrothermal synthesis starting from aqueous solution of ZrOCl2·8H2O. Results of investigations on the aqueous suspension stability of the washed zirconia nanopowders by dynamic light scattering showed that the suspension, constituted by superaggregates of nanoparticles (131 ± 10 nm), was stable up to 15 days. Nanopowders were investigated by means of transmission electron microscopy and small angle x-ray scattering measurements which proved that the zirconia nanopowder is constituted by small primary nanoparticles of ca. 8 nm that agglomerate forming bigger aggregates of 50 ± 1 nm.

research product

Graphene nanoplatelets (GNPs): new preparation methods and their structural characterization

Graphene is one of the allotropes of elemental carbon with a planar monolayer of carbon atoms arranged into a two-dimensional honey-comb lattice [1]. It has demonstrated a variety of intriguing properties as new material for future applications and composite industry [2-3]. In particular the interesting electrical properties candidate the graphene to be an excellent successor to silicon in electronic applications. Since its preparation is rather difficult and complex, graphene nanoplatelets (GNPs) are also intensively studied. GNPs are more easily to obtain, have similar properties and can be used in the same applications [4]. The aim of the current research is the development of new prepar…

research product

Oxidized graphene in ionic liquids for assembling chemically modified electrodes: a structural and electrochemical characterization study

Dispersions of graphene oxide (GO) nanoribbons in ionic liquids, ILs (either 1-butyl-3-methylimidazolium chloride (BMIM-Cl-) or 1-butylpyridinium chloride (-Bupy-Cl-)) have been used to assemble modified screen printed electrodes (SPEs). The graphene oxide/ionic liquid dispersions have been morphologically and structurally characterized by the use of several techniques: X-ray photoelectron spectroscopy (XPS), Fourier transform-infrared (FT-IR) spectroscopy, high-resolution-transmission electron microscopy (HR-TEM). The assembled modified SPEs have then been challenged with various compounds and compared to several electro-active targets. In all cases high peak currents were detected, as wel…

research product

Preparazione e caratterizzazione di nanocompositi strutturali costituiti da poliammide e carbonio nanostrutturato

L’obiettivo della presente tesi di dottorato è stato la preparazione e la caratterizzazione di nanocompositi a matrice polimerica contenenti forme allotropiche del carbonio nanostrutturato; tali materiali, grazie alle particolari caratteristiche meccaniche e di rinforzo, trovano applicazione nella fabbricazione di speciali dispositivi individuali come guanti, elmetti, corpetti, etc... Sono state preparate fibre di poliammide (PA) contenenti carbon black (CB), nanoplacchette di grafite (GNP) e nanotubi di carbonio (CNT); per questi ultimi sono stati valutati, inoltre, gli effetti delle loro dimensioni e della funzionalizzazione della loro superficie sulle proprietà di rinforzo dei nanocompos…

research product

Polyamide-Based Fibers Containing Microwave-Exfoliated Graphite Nanoplatelets

Exfoliated Graphite NanoPlatelets (GNP) have been obtained from Graphite Intercalation Compounds (GIC) subjected to thermal and microwave treatments. Accurate morphological and structural characterization of obtained GNP, performed to compare the degree of exfoliation, show that microwave-treated GNP, exhibit well-exfoliated structure, without any reduction in dimensions compared with the native GIC, differently to the thermal-treated ones. Microwave-treated GNP have been introduced in polyamide (PA) through melt-mixing to obtain nanocomposite that has been subjected to elongational flow, with the aim to improve the nanofiller dispersion and induce GNP orientation along the fiber direction.…

research product

Catalytic performance of CoAlZn and NiAlZn mixed oxides in hydrogen production by bio-ethanol partial oxidation

CoAlZn and NiAlZn mixed oxides were prepared by sol-gel method and tested in partial oxidation of bio-ethanol (POE). At lower temperatures, CoAlZn showed higher ethanol conversion and higher selectivity to H2 and CO than NiAlZn. At higher temperatures, ethanol conversion on both catalysts reached 100%, while selectivity (S) to H2 and CO became higher on NiAlZn. At 750 C, NiAlZn showed S(H2) of 95%, S(CO) of 90%, while for CoAlZn these values were 90% and 83% respectively. Both catalysts were resistant to coking, but the amount of carbon deposits was still lower on NiAlZn. During 50 h on-stream, ethanol conversion and selectivity to H2 and CO on NiAlZn remained unchanged demonstrating stable…

research product

Synthesis and characterization of mesoporous Mn-MCM-41 materials

Si { 1 H} CP-MAS NMR X-ray photo-emission spectroscopy a b s t r a c t MCM-41 has been synthesized at two different pH using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 ◦ C for 4 h. Mn-MCM-41 powders with different Mn/Si molar ratios were prepared using the incipient wetness method, followed by calcination at 550 ◦C for 5 h. At the end of the impregnation process the powders colour changed from white to brown whose intensity depends on manganese quantity. The materials characterization was performed by X-ray diffraction, N2 adsorption, 29 Si Cross Polarization–Mag…

research product

Macro-micro relationship in nanostructured functional composites

This paper examines the results of the characterization of two functional composites: Poly(methyl methacrylate) (PMMA)-Ce:YAG (yttrium aluminium garnet doped with cerium) and PMMA-cobalt hexacyanoferrate (CoHCF). The composites were prepared as possible emitters in the fields of lighting thermal sensors. The prepared composites were char- acterized using transmission electron microscopy (TEM), nuclear magnetic resonance (NMR) spectroscopy, thermogravi- metric analysis (TGA), differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) analyses to study the correlation between micro and macro characteristics. We found that the molecular interactions of the two different fill…

research product

Ce:YAG nanoparticles embedded in a PMMA matrix: preparation and characterization

A Ce:YAG-poly(methyl methacrylate) composite was prepared using in situ polymerization by embedding the Ce:YAG nanopowder in a blend of methyl methacrylate (MMA) and 2-methacrylic acid (MAA) monomers and activating the photopolymerization using a radical initiator. The obtained nanocomposite was yellow and transparent. Its characterization was performed using transmission electron microscopy, small angle X-ray scattering, (13)C cross-polarization magic-angle spinning nuclear magnetic resonance, and photoluminescence spectroscopy. Results showed that Ce:YAG nanoparticles are well dispersed in the polymeric matrix whose structure is organized in a lamellar shape. The luminescence properties o…

research product

Thermal Properties, Raman Spectroscopy and Tem Images of Neutron-Bombarded Graphite

Neutron-irradiated graphite to a total dose of 3.6 × 1016 n cm−2 was studied by DSC, Raman spectroscopy and transmission electron microscopy (TEM). The Wigner energy of neutron-irradiated graphite was 9.5 J/g as measured by DSC; it was released with an exothermal peak at 220°C. The Raman spectroscopy has confirmed the expected effect caused by neutron irradiation of the graphite substrate. The TEM imaging has shown that neutron-irradiated graphite can be effectively exfoliated by sonication in comparison to pristine graphite, which under similar conditions does not exfoliate at all. The interstitial Frenkel defects in neutron-irradiated graphite are intercalated between the graphene layers …

research product

A new preparation method of nanolime dispersion for the conservation of artworks

research product

An insight into the interaction between functionalized thermoplastic elastomer and layered double hydroxides through rheological investigations

Abstract Nanocomposites based on maleated poly(styrene-(ethylene-co-butylene)-styrene) copolymer (SEBSgMA) and organo-modified layered double hydroxide (OLDH) have been formulated with the aim to investigate the effects of interfacial interactions between the grafted maleic anhydride groups of the copolymer and the OLDH nanolayers on the rheological properties of nanocomposites. The spectroscopic analysis indicates the establishment of specific polymer/nanofiller interactions, whose extent has been highlighted through morphological and rheological investigations. Specifically, oscillatory melt rheology and shear relaxation tests have been considered in order to deeply investigate the interf…

research product

Nanoparticles of AlTiZr mixed oxides as support of hydrodesulfurizaton catalysts: Synthesis and characterisation

Abstract TiAlZr mixed oxides, synthesized using sol–gel method, were characterized and used as supports of hydrodesulfurization catalysts (12 wt% Mo) prepared by impregnation either with molybdenum heteropolyacid H3PMo12O40 or its cobalt salt Co1.5PMo12O40. Structure, morphology and textural properties of oxides and catalysts were characterized using X-ray powder diffraction (XRD), Raman spectroscopy, Nitrogen adsorption porosimetry, TEM-EDS, temperature-programmed desorption (TPD) and temperature-programmed reduction (TPR) techniques. Activity of the catalytic systems was tested in thiophene hydrodesulfurization (HDS). No formation of a new oxide phase was revealed in the synthesized mixed…

research product

Polyamide/carbonaceous particles nanocomposites fibers: Morphology and performances

In this work, the influence of carbonaceous particles with different sizes and shapes on the morphology and mechanical performances of polyamide (PA)-based fibers was investigated. Graphene nanoplatelets (GNP) are compared with spherical and rod-like carbon fillers such as carbon black (CB) and multiwall carbon nanotubes (CNTs). The increments of the complex viscosity as well as elastic and loss moduli, in the melt state, assessed by rheological analysis, are reduced by modifying polyamide (PA) matrix with nanofillers in a following order: CNTs > GNP > CB. All the nanocomposites, however, show viscosity and moduli higher than those of neat PA. The CB loading causes a mere increase of the vi…

research product

Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay

Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag+, Klebsiella oxytoca DSM 29614 produces biogenic Ag-NPs embedded in its peculiar exopolysaccharide (EPS). K. oxytoca DSM 29614 was cultivated in a defined growth medium–containing citrate (as sole carbon source) and supplemented with Ag+ and either low or high Fe(III) concentration. As inferred from elemental analysis, transmission and scanning electron microscopy, Fourier transform infrared spectrometry and dynamic light scattering, Ag-EPS NPs were produced in both conditions and contained also Fe. The production yield of high-Fe/Ag-EPS NPs was 12 times …

research product

Catalytic and photocatalytic epoxidation of limonene: Using mesoporous silica nanoparticles as functional support for a Janus-like approach

Abstract Mesoporous silica nanoparticles (MSN) were used as a platform to design novel active materials for the catalytic and photocatalytic epoxidation of limonene. Binary systems comprised of TiO2 and MSN were used for the catalytic reaction when doped with manganese, and for the photocatalytic reaction when functionalised with hexadecyl chains or imidazolinyl groups. All of the MSN based systems were synthesized by condensation in emulsion. A thorough characterization of the powders has been performed by means of Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES), X-ray diffraction (XRD), FT-IR, Raman and EPR Spectroscopy, Fluorescence and diffuse reflectance UV–vis (DR…

research product

Corrigendum to “The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA [Pol. Degrad. Stab. 97 (2012) 452-459]. Polymer Degradation and Stability 97 (2012) 2477

research product

Corrigendum to “The effect of silica nanoparticles on the morphology, mechanical properties and thermal degradation kinetics of PMMA” [Polym Degrad Stab 97 (2012) 452–459]

research product

Particle size-related limitations of persistent phosphors based on the doped Y3Al2Ga3O12 system

AbstractCo-doped Ce3+, Cr3+ and Pr3+ yttrium–aluminium–gallium garnet powders of various sizes were obtained by co-precipitation method. The microstructure and morphology were investigated by XRPD, TEM and gas porosimetry. The luminescence properties were studied by excitation and emission spectra, quantum yield and decay times. Thermoluminescence measurements were performed to evaluate the activation energy, traps redistribution and frequency factor. Limitation in the energy transfer between dopant ions in the small particles, traps depth and surface defects were considered and investigated as responsible for the quenching of persistent luminescence. The phosphors annealed at 1100 °C show …

research product

MCM-41-CdS nanoparticle composite material: Preparation and characterization

The preparation and characterization of a hierarchical material constituted by a mesoporous silica MCM-41 whose mesochannels contain CdS nanoparticles capped with both bis(2-ethylhexyl) amine and bis(2-ethylhexyl) sodium sulfosuccinate is reported. MCM-41 powder was synthesized by using the LCT methodology. CdS nanoparticles were obtained within the inversed micelle core of a water/ AOT/n-heptane microemulsion. Nanoparticles growth was followed by means of UV–Vis spectroscopy and was inhibited by BEA addition. The CdS-capped nanoparticles were separated by centrifugation, washed with water and ethanol and finally dispersed in n-heptane. The insertion of CdS nanoparticles into MCM-41 mesocha…

research product

Effect of Elongational Flow and Polarity of Organomodified Clay on Morphology and Mechanical Properties of a PLA Based Nanobiocomposite

Abstract In biodegradable polymer world nanobiocomposites represent a new group of materials filled with inert nanoparticles that shows very interesting properties and the biodegradability of the matrix. In this work we have studied the effect of the polarity of the organomodified montmorillonite and of the elongational flow on the morphology and the rheological and mechanical properties of a new nanobiocomposite with a matrix of biodegradable PLA based blend. The elastic modulus enhances in presence of the nanofiller and this increase is larger and larger with the increment of the orientation. The tensile strength does not show any significant change at the same level of orientation. Moreo…

research product

On the role of extensional flow in morphology and property modifications of MWCNT/polyamide-based fibres

Unfilled and MWCNT-filled PA fibers are prepared and the effect of the extensional flow on their mechanical performance and morphological variations is investigated. Morphological analyses using SEM, TEM, and SAXS suggest a stronger orientation of the MWCNTs along the fiber direction with increasing extensional flow. A particular MWCNT bundle formation in the PA drawn nanocomposite fibers is observed for the first time, and a pull-out of the central nanotube in some bundles is noted. The maintenance of the “shish-kebab” structure upon extensional flow is responsible for the mechanical improvements and dimensional stability in MWCNT-filled PA fibers.

research product

Streptomyces coelicolor extracellular vesicles

This study may reveal the importance of extracellular vesicles in the physiology of S. coelicolor and may also have important biotechnological implications.

research product

Organic-inorganic nanocomposites prepared by reactive suspension method: investigation on filler/matrix interactions and their effect on the nanoparticles dispersion

Epoxy resin/TiO2 nanocomposites prepared by both reactive suspension method, based on in situ synthesis, and conventional mechanical mixing are analysed by solid-state nuclear magnetic resonance and transmission electron microscopy in order to have a deeper insight into the nature of interactions at the polymer/particle interface and their effect on the nanoparticles dispersion. Specifically, solid-state nuclear magnetic resonance experiments showed that the nanoparticles, synthesized by reactive suspension method, can efficiently link the matrix by hydrogen bonds forming a hybrid organic-inorganic 3D network. Such evidences strongly supports our previously reported theory, in which the nan…

research product

Synthesis, Characterization and Catalytic Activity of mesoporous Mn-MCM-41 materials

MCM-41 has been synthesized at two different pH using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 ◦C for 4 h. Mn-MCM-41 powders with different Mn/Si molar ratios were prepared using the incipient wetness method, followed by calcination at 550 ◦C for 5 h. At the end of the impregnation process the powders colour changed from white to brown whose intensity depends on manganese quantity. The materials characterization was performed by X-ray diffraction, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning NMR, and X-ray Photoelectron Spectroscopy. The effects …

research product

H3PW12O40 supported on mesoporous MCM-41 and Al-MCM-41 materials: preparation and characterisation

MCM-41 and Al–MCM-41 has been synthesized using cetyl-trimethylammonium bromide (CTAB) surfactant as template and adding the silica precursor to aqueous solutions containing CTAB. The obtained solids were calcined at 600 °C for 4 h. HPW heteropolyacid supported on the mesoporous were prepared using the incipient wetness method. The characterization of materials was performed by X-ray diffraction, Transmission Electron Microscopy, N2 adsorption, 29Si Cross Polarization–Magic Angle Spinning and 27Al MAS NMR. Results showed that the hexagonal structure is obtained in both cases. The Aluminium species are located inside an extra-framework. The impregnation reduces the surface area of the mesopo…

research product