0000000000126212
AUTHOR
Felix Pfitzner
Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation
Transition-metal oxide nanoparticles and molecular coordination compounds are highlighted as functional mimics of halogenating enzymes. These enzymes are involved in halometabolite biosynthesis. Their activity is based upon the formation of hypohalous acids from halides and hydrogen peroxide or oxygen, which form bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities in follow-up reactions. Therefore, enzyme mimics and halogenating enzymes may be valuable tools to combat biofilm formation. Here, halogenating enzyme models are briefly described, enzyme mimics are classified according to their catalytic functions, and current knowledge about th…
Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1−xBixO2−δ)
Preventing bacterial adhesion on materials surfaces is an important problem in marine, industrial, medical and environmental fields and a topic of major medical and societal importance. A defense strategy of marine organisms against bacterial colonization relies on the biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidases, a class of metal-dependent enzymes, whose activity can be emulated by ceria nanoparticles. The enzyme-like activity of ceria was enhanced by a factor of 3 through bismuth substitution (Ce1−xBixO2−δ). The solubility of Bi3+ in CeO2 is confined to the range 0 < x < 0.25 under quasi-hydrothermal c…
Cerdioxid schützt vor marinem Fouling
CeO2−x nanorods with intrinsic urease-like activity
The large-scale production and ecotoxicity of urea make its removal from wastewater a health and environmental challenge. Whereas the industrial removal of urea relies on hydrolysis at elevated temperatures and high pressure, nature solves the urea disposal problem with the enzyme urease under ambient conditions. We show that CeO2−x nanorods (NRs) act as the first and efficient green urease mimic that catalyzes the hydrolysis of urea under ambient conditions with an activity (kcat = 9.58 × 101 s−1) about one order of magnitude lower than that of the native jack bean urease. The surface properties of CeO2−x NRs were probed by varying the Ce4+/Ce3+ ratio through La doping. Although La substit…
Haloperoxidase Mimicry by CeO2−xNanorods Combats Biofouling
CeO2-x nanorods are functional mimics of natural haloperoxidases. They catalyze the oxidative bromination of phenol red to bromophenol blue and of natural signaling molecules involved in bacterial quorum sensing. Laboratory and field tests with paint formulations containing 2 wt% of CeO2-x nanorods show a reduction in biofouling comparable to Cu2 O, the most typical biocidal pigment.