Functional Enzyme Mimics for Oxidative Halogenation Reactions that Combat Biofilm Formation
Transition-metal oxide nanoparticles and molecular coordination compounds are highlighted as functional mimics of halogenating enzymes. These enzymes are involved in halometabolite biosynthesis. Their activity is based upon the formation of hypohalous acids from halides and hydrogen peroxide or oxygen, which form bioactive secondary metabolites of microbial origin with strong antibacterial and antifungal activities in follow-up reactions. Therefore, enzyme mimics and halogenating enzymes may be valuable tools to combat biofilm formation. Here, halogenating enzyme models are briefly described, enzyme mimics are classified according to their catalytic functions, and current knowledge about th…
Nanocomposite antimicrobials prevent bacterial growth through the enzyme-like activity of Bi-doped cerium dioxide (Ce1−xBixO2−δ)
Preventing bacterial adhesion on materials surfaces is an important problem in marine, industrial, medical and environmental fields and a topic of major medical and societal importance. A defense strategy of marine organisms against bacterial colonization relies on the biohalogenation of signaling compounds that interfere with bacterial communication. These reactions are catalyzed by haloperoxidases, a class of metal-dependent enzymes, whose activity can be emulated by ceria nanoparticles. The enzyme-like activity of ceria was enhanced by a factor of 3 through bismuth substitution (Ce1−xBixO2−δ). The solubility of Bi3+ in CeO2 is confined to the range 0 < x < 0.25 under quasi-hydrothermal c…
Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V6O11
The Magneli phase V6O11 was synthesized in gram amounts from a powder mixture of V6O11/V7O13 and vanadium metal, using the spark plasma sintering (SPS) technique. Its structure was determined with synchrotron X-ray powder diffraction data from a phase-pure sample synthesized by conventional solid-state synthesis. A special feature of Magneli-type oxides is a combination of crystallographic shear and intrinsic disorder that leads to relatively low lattice thermal conductivities. SPS prepared V6O11 has a relatively low thermal conductivity of κ = 2.72 ± 0.06 W (m K)-1 while being a n-type conductor with an electrical conductivity of σ = 0.039 ± 0.005 (μΩ m)-1, a Seebeck coefficient of α = -(3…
Cerdioxid schützt vor marinem Fouling
Rational Design of Thermoresponsive Microgel Templates with Polydopamine Surface Coating for Microtissue Applications.
Functional microgels provide a versatile basis for synthetic in vitro platforms as alternatives to animal experiments. The tuning of the physical, chemical, and biological properties of synthetic microgels can be achieved by blending suitable polymers and formulating them such to reflect the heterogenous and complex nature of biological tissues. Based on this premise, this paper introduces the development of volume-switchable core-shell microgels as 3D templates to enable cell growth for microtissue applications, using a systematic approach to tune the microgel properties based on a deep conceptual and practical understanding. Microscopic microgel design, such as the tailoring of the microg…
Mixed Ligand Shell Formation upon Catechol Ligand Adsorption on Hydrophobic TiO2 Nanoparticles
Modifying the surfaces of metal oxide nanoparticles (NPs) with monolayers of ligands provides a simple and direct method to generate multifunctional coatings by altering their surface properties. T...