0000000000129120

AUTHOR

T.a. Alexeeva

showing 4 related works from this author

Analytic Exact Upper Bound for the Lyapunov Dimension of the Shimizu–Morioka System

2015

In applied investigations, the invariance of the Lyapunov dimension under a diffeomorphism is often used. However, in the case of irregular linearization, this fact was not strictly considered in the classical works. In the present work, the invariance of the Lyapunov dimension under diffeomorphism is demonstrated in the general case. This fact is used to obtain the analytic exact upper bound of the Lyapunov dimension of an attractor of the Shimizu–Morioka system. peerReviewed

Lyapunov functionPure mathematicsMathematics::Dynamical SystemsGeneral Physics and Astronomylcsh:AstrophysicsLyapunov exponentUpper and lower boundssymbols.namesakeShimizu-Morioka systemDimension (vector space)Attractorlcsh:QB460-466Lyapunov equationLyapunov redesignlcsh:ScienceMathematicsta111Mathematical analysisShimizu–Morioka systemlcsh:QC1-999Nonlinear Sciences::Chaotic DynamicssymbolsLyapunov dimensionlcsh:QDiffeomorphismLyapunov exponentlcsh:PhysicsEntropy
researchProduct

Dynamics of the Shapovalov mid-size firm model

2020

Forecasting and analyses of the dynamics of financial and economic processes such as deviations of macroeconomic aggregates (GDP, unemployment, and inflation) from their long-term trends, asset markets volatility, etc., are challenging because of the complexity of these processes. Important related research questions include, first, how to determine the qualitative properties of the dynamics of these processes, namely, whether the process is stable, unstable, chaotic (deterministic), or stochastic; and second, how best to estimate its quantitative indicators including dimension, entropy, and correlation characteristics. These questions can be studied both empirically and theoretically. In t…

Lyapunov functionDynamical systems theoryComputer sciencechaosGeneral MathematicsFOS: Physical sciencesGeneral Physics and AstronomyforecastingLyapunov exponent01 natural sciencesmid-size firm modelChaos theory010305 fluids & plasmassymbols.namesakemultistability0103 physical sciencesAttractorApplied mathematicsEntropy (information theory)taloudelliset mallitdynaamiset systeemit010301 acousticsMultistabilityLyapunov stabilitykaaosteoriaApplied MathematicsLyapunov exponentstaloudelliset ennusteetStatistical and Nonlinear Physicsabsorbing setNonlinear Sciences - Chaotic Dynamicsglobal stabilitytalousmatematiikkasymbolsChaotic Dynamics (nlin.CD)
researchProduct

Invariance of Lyapunov exponents and Lyapunov dimension for regular and irregular linearizations

2014

Nowadays the Lyapunov exponents and Lyapunov dimension have become so widespread and common that they are often used without references to the rigorous definitions or pioneering works. It may lead to a confusion since there are at least two well-known definitions, which are used in computations: the upper bounds of the exponential growth rate of the norms of linearized system solutions (Lyapunov characteristic exponents, LCEs) and the upper bounds of the exponential growth rate of the singular values of the fundamental matrix of linearized system (Lyapunov exponents, LEs). In this work the relation between Lyapunov exponents and Lyapunov characteristic exponents is discussed. The invariance…

Lyapunov functionMathematics::Dynamical SystemsComputationFOS: Physical sciencesAerospace EngineeringOcean EngineeringDynamical Systems (math.DS)Lyapunov exponent01 natural sciencessymbols.namesakeExponential growthComputer Science::Systems and Control0103 physical sciencesFOS: MathematicsApplied mathematics0101 mathematicsElectrical and Electronic EngineeringMathematics - Dynamical Systems010301 acousticsMathematicsApplied MathematicsMechanical Engineering010102 general mathematicsNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsSingular valueFundamental matrix (linear differential equation)Control and Systems EngineeringsymbolsDiffeomorphismChaotic Dynamics (nlin.CD)Characteristic exponent
researchProduct

Study of irregular dynamics in an economic model: attractor localization and Lyapunov exponents

2021

Cyclicity and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global at…

Lyapunov functionGeneral MathematicsChaoticFOS: Physical sciencesGeneral Physics and AstronomyattraktoritAbsorbing set (random dynamical systems)Lyapunov exponentInstabilitysymbols.namesakeDimension (vector space)AttractorApplied mathematicsEntropy (information theory)taloudelliset mallitdynaamiset systeemitMathematicskaaosteoriaApplied MathematicsLyapunov exponentstaloudelliset ennusteetkausivaihtelutStatistical and Nonlinear PhysicsAbsorbing setNonlinear Sciences - Chaotic DynamicsNonlinear Sciences::Chaotic DynamicsMid-size firm modelLyapunov dimensionsymbolsUnstable periodic orbitChaotic Dynamics (nlin.CD)Chaos, Solitons & Fractals
researchProduct