Collective amplitude mode fluctuations in a flat band superconductor
We study the fluctuations of the amplitude (i.e. the Higgs-Anderson) mode in a superconducting system of coupled Dirac particles proposed as a model for possible surface or interface superconductivity in rhombohedral graphite. We show that the absence of Fermi energy and vanishing of the excitation gap of the collective amplitude mode in the model leads to a large fluctuation contribution to thermodynamic quantities such as the heat capacity. As a consequence, the mean-field theory becomes inaccurate indicating that the interactions lead to a strongly correlated state. We also present a microscopic derivation of the Ginzburg-Landau theory corresponding to this model.