0000000000129244

AUTHOR

Robert D. Holt

Disturbance-induced emigration: an overlooked mechanism that reduces metapopulation extinction risk.

Emigration propensity (i.e., the tendency to leave undisturbed patches) is a key life-history trait of organisms in metapopulations with local extinctions and colonizations. Metapopulation models of dispersal evolution typically assume that patch disturbance kills all individuals within the patch, thus causing local extinction. However, individuals may instead be able to leave a patch when it is disturbed, either by fleeing before being killed or simply because the disturbance destroys the patch without causing mortality. This scenario may pertain to a wide range of organisms from horizontally transmitted symbionts, to aquatic insects inhabiting temporary ponds, to vertebrates living in fra…

research product

Natural enemies and biodiversity : the double-edged sword of trophic interactions

Natural enemies, that is, species that inflict harm on others while feeding on them, are fundamental drivers of biodiversity dynamics and represent a substantial portion of biodiversity as well. Along the life history of the Earth, natural enemies have been involved in probably some of the most productive mechanisms of biodiversity genesis; that is, adaptive radiation mediated by enemy-victim coevolutionary processes. At ecological timescales, natural enemies are a fundamental piece of food webs and can contribute to biodiversity preservation by promoting stability and coexistence at lower trophic levels through top-down regulation mechanisms. However, natural enemies often produce dramatic…

research product

Why aren't warning signals everywhere? : On the prevalence of aposematism and mimicry in communities

Warning signals are a striking example of natural selection present in almost every ecological community - from Nordic meadows to tropical rainforests, defended prey species and their mimics ward off potential predators before they attack. Yet despite the wide distribution of warning signals, they are relatively scarce as a proportion of the total prey available, and more so in some biomes than others. Classically, warning signals are thought to be governed by positive density-dependent selection, i.e. they succeed better when they are more common. Therefore, after surmounting this initial barrier to their evolution, it is puzzling that they remain uncommon on the scale of the community. He…

research product

The Effect of Predator Population Dynamics on Batesian Mimicry Complexes.

Understanding Batesian mimicry is a classic problem in evolutionary biology. In Batesian mimicry, a defended species (the model) is mimicked by an undefended species (the mimic). Prior theories have emphasized the role of predator behavior and learning as well as evolution in model-mimic complexes but have not examined the role of population dynamics in potentially governing the relative abundances and even persistence of model-mimic systems. Here, we examined the effect of the population dynamics of predators and alternative prey on the prevalence of warning-signaling prey composed of models and mimics. Using optimal foraging theory and signal detection theory, we found that the inclusion …

research product

The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont.

1.The role of biotic interactions in shaping the distribution and abundance of species should be particularly pronounced in symbionts. Indeed, symbionts have a dual niche composed of traits of their individual hosts and the abiotic environment external to the host, and often combine active dispersal at finer scales with host‐ mediated dispersal at broader scales. The biotic complexity in the determinants of species distribution and abundance should be even more pronounced for hypersymbionts (symbionts of other symbionts). 2.We use a chain of symbiosis to explore the relative influence of nested biotic interactions and the abiotic environment on occupancy and abundance of a hypersymbiont. 3.…

research product

Data from: The interplay of nested biotic interactions and the abiotic environment regulates populations of a hypersymbiont

1. The role of biotic interactions in shaping distribution and abundance of species should be particularly pronounced in symbionts. Indeed, symbionts have a dual niche composed of traits of their individual hosts and the abiotic environment external to the host, and often combine active dispersal at finer scales with host-mediated dispersal at broader scales. The biotic complexity in the determinants of species distribution and abundance should be even more pronounced for hypersymbionts (symbionts of other symbionts). 2. We use a chain of symbiosis to explore the relative influence of nested biotic interactions and the abiotic environment on occupancy and abundance of a hypersymbiont. 3. Ou…

research product