0000000000131558

AUTHOR

Ramón Serrano

BvCOLD1: A novel aquaporin from sugar beet (Beta vulgarisL.) involved in boron homeostasis and abiotic stress

Beta vulgaris (sugar beet) is one of the most important industrial crops. Screening of a cDNA library for sugar beet genes able to confer cold tolerance upon overexpression in yeast identified a novel aquaporin, which we named BvCOLD1. The amino acid sequence of BvCOLD1 indicated that an acidic protein (pI 5.18) is similar to tonoplast intrinsic protein aquaporins. RNA expression analysis indicated that BvCOLD1 is expressed in all sugar beet organs. Confocal microscopy of a green fluorescent protein-tagged version localized BvCOLD1 in the endoplasmic reticulum in yeast and in plant cells. Experiments in yeast showed that BvCOLD1 has an important role in transporting several molecules, among…

research product

Expression of a plant serine O-acetyltransferase inSaccharomyces cerevisiae confers osmotic tolerance and creates an alternative pathway for cysteine biosynthesis

Screening of a sugar beet (Beta vulgaris cv. Dita) cDNA library for clones able to confer osmotic tolerance to the osmosensitive gpd1 mutant of Saccharomyces cerevisiae identified a novel serine O-acetyltransferase (BvSAT; EC 2.3.1.30). This enzyme is involved in cysteine biosynthesis in plants and bacteria, producing O-acetylserine, which is converted into cysteine in a reaction catalysed by O-acetylserine sulphydrylase (EC 4.2.99.8). This pathway is not conserved in yeast, where cysteine is synthesized in a four-step pathway starting with homoserine and having O-acetylhomoserine, homocysteine and cystathionine as intermediates. Expression of BvSAT in yeast takes advantage of the activity …

research product

A plant genetically modified that accumulates Pb is especially promising for phytoremediation

6 pages, 3 figures, 1 table.

research product

An Arabidopsis Mutant Over-Expressing Subtilase SBT4.13 Uncovers the Role of Oxidative Stress in the Inhibition of Growth by Intracellular Acidification

Intracellular acid stress inhibits plant growth by unknown mechanisms and it occurs in acidic soils and as consequence of other stresses. In order to identify mechanisms of acid toxicity, we screened activation-tagging lines of Arabidopsis thaliana for tolerance to intracellular acidification induced by organic acids. A dominant mutant, sbt4.13-1D, was isolated twice and shown to over-express subtilase SBT4.13, a protease secreted into endoplasmic reticulum. Activity measurements and immuno-detection indicate that the mutant contains less plasma membrane H+-ATPase (PMA) than wild type, explaining the small size, electrical depolarization and decreased cytosolic pH of the mutant but not orga…

research product

An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils

8 pages, 3 figures, 2 tables.

research product

Response of the Saccharomyces cerevisiae Mpk1 Mitogen-Activated Protein Kinase Pathway to Increases in Internal Turgor Pressure Caused by Loss of Ppz Protein Phosphatases

ABSTRACT The Mpk1 pathway of Saccharomyces cerevisiae is a key determinant of cell wall integrity. A genetic link between the Mpk1 kinase and the Ppz phosphatases has been reported, but the nature of this connection was unclear. Recently, the Ppz phosphatases were shown to be regulators of K + and pH homeostasis. Here, we demonstrate that Ppz-deficient strains display increased steady-state K + levels and sensitivity to increased KCl concentrations. Given these observations and the fact that K + is the major determinant of intracellular turgor pressure, we reasoned that the connection between PPZ1 and - 2 and MPK1 was due to the combination of increased internal turgor pressure in Ppz-defic…

research product

Plastidial Glycolytic Glyceraldehyde-3-Phosphate Dehydrogenase Is an Important Determinant in the Carbon and Nitrogen Metabolism of Heterotrophic Cells in Arabidopsis

This study functionally characterizes the Arabidopsis (Arabidopsis thaliana) plastidial glycolytic isoforms of glyceraldehyde-3-phosphate dehydrogenase (GAPCp) in photosynthetic and heterotrophic cells. We expressed the enzyme in gapcp double mutants (gapcp1gapcp2) under the control of photosynthetic (Rubisco small subunit RBCS2B [RBCS]) or heterotrophic (phosphate transporter PHT1.2 [PHT]) cell-specific promoters. Expression of GAPCp1 under the control of RBCS in gapcp1gapcp2 had no significant effect on the metabolite profile or growth in the aerial part (AP). GAPCp1 expression under the control of the PHT promoter clearly affected Arabidopsis development by increasing the number of later…

research product

The yeast inositol monophosphatase is a lithium- and sodium-sensitive enzyme encoded by a non-essential gene pair

Inositol monophosphatases (IMPases) are lithium-sensitive enzymes that participate in the inositol cycle of calcium signalling and in inositol biosynthesis. Two open reading frames (YHR046c and YDR287w) with homology to animal and plant IMPases are present in the yeast genome. The two recombinant purified proteins were shown to catalyse inositol-1-phosphate hydrolysis sensitive to lithium and sodium. A double gene disruption had no apparent growth defect and was not auxotroph for inositol. Therefore, lithium effects in yeast cannot be explained by inhibition of IMPases and inositol depletion, as suggested for animal systems. Overexpression of yeast IMPases increased lithium and sodium toler…

research product

A novel target of lithium therapy.

Phosphatases converting 3'-phosphoadenosine 5'-phosphate (PAP) into adenosine 5'-phosphate are of fundamental importance in living cells as the accumulation of PAP is toxic to several cellular systems. These enzymes are lithium-sensitive and we have characterized a human PAP phosphatase as a potential target of lithium therapy. A cDNA encoding a human enzyme was identified by data base screening, expressed in Escherichia coli and the 33 kDa protein purified to homogeneity. The enzyme exhibits high affinity for PAP (K(m)1 microM) and is sensitive to subtherapeutic concentrations of lithium (IC(50)=0.3 mM). The human enzyme also hydrolyzes inositol-1, 4-bisphosphate with high affinity (K(m)=0…

research product