0000000000131591

AUTHOR

Lkhamsuren Bayarjargal

showing 5 related works from this author

Phase transition of tetragonal copper sulfide Cu2S at low temperatures

2017

The low-temperature behavior of tetragonal copper sulfide, ${\mathrm{Cu}}_{2}\mathrm{S}$, was investigated by powder and single-crystal x-ray diffraction, calorimetry, electrical resistance measurements, and ambient temperature optical absorption spectroscopy. The experiments were complemented by density-functional-theory-based calculations. High-quality, polycrystalline samples and single crystals of tetragonal copper sulfide were synthesized at 5 GPa and 700 K in a large volume multianvil press. Tetragonal ${\mathrm{Cu}}_{2}\mathrm{S}$ undergoes a temperature-induced phase transition to an orthorhombic structure at around 202 K with a hysteresis of $\ifmmode\pm\else\textpm\fi{}21$ K, an e…

Phase transitionMaterials scienceAbsorption spectroscopyBand gapTransition temperaturechemistry.chemical_element02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCopperHeat capacity0104 chemical sciencesCrystallographyTetragonal crystal systemchemistryOrthorhombic crystal system0210 nano-technologyPhysical Review B
researchProduct

Irradiation effects in CaF2probed by Raman scattering

2016

The formation conditions and dynamics of Ca colloids and point defects that appear in irradiated single crystals of CaF2 were investigated by Raman spectroscopy. The intensity changes in the Raman spectra because of the presence of different concentrations of point defects and Ca colloids that emerged in CaF2 after irradiation with 2.2 GeV Au ions were used to study their distribution and stability under illumination with three laser wavelengths (473, 532 and 633 nm) at different output powers (2 to 200 mW). A damage saturation at a fluence of 6 × 1011 ion cm−2 was observed. The dependence of the spectral changes on the ion fluence can be described by a core/halo damage cross-section model.…

010302 applied physicsChemistryAnalytical chemistry02 engineering and technology021001 nanoscience & nanotechnologyLaser01 natural sciencesCrystallographic defectMolecular physicsFluencelaw.inventionIonsymbols.namesakeSwift heavy ionlaw0103 physical sciencessymbolsGeneral Materials ScienceIrradiation0210 nano-technologyRaman spectroscopySpectroscopyRaman scatteringJournal of Raman Spectroscopy
researchProduct

Artificial granularity in two-dimensional arrays of nanodots fabricated by focused-electron-beam-induced deposition.

2010

We have prepared 2D arrays of nanodots embedded in an insulating matrix by means of focused-electron-beam-induced deposition using the W(CO)(6) precursor. By varying the deposition parameters, i.e. the electron beam current and energy and the raster constant, we obtain an artificial granular material with tunable electrical properties. The analysis of the temperature dependence of the conductivity and of the current-voltage characteristic suggests that the transport mechanism is governed by electron tunneling between artificial grains. In order to understand the nature of the granularity and thus the microstructural origin of the electronic transport behavior, we perform TEM and micro-Raman…

Materials scienceMechanical EngineeringAnalytical chemistrychemistry.chemical_elementBioengineeringGeneral ChemistryMolecular physicsNanocrystalline materialAmorphous solidchemistry.chemical_compoundAmorphous carbonchemistryMechanics of MaterialsTungsten carbideGeneral Materials ScienceGraphiteNanodotElectrical and Electronic EngineeringElectron beam-induced depositionCarbonNanotechnology
researchProduct

High-pressure phase ofLaPO4studied by x-ray diffraction and second harmonic generation

2016

The pressure-induced phase transition of monazite-type ${\mathrm{LaPO}}_{4}$ at $\ensuremath{\approx}26$ GPa is studied by single-crystal x-ray diffraction and second harmonic generation (SHG) up to 31 GPa. The structure of the postmonazite phase of ${\mathrm{LaPO}}_{4}$ has been obtained and it is shown that it corresponds to a post-barite-type structure with an acentric space group $P{2}_{1}{2}_{1}{2}_{1}$. A strong increase of the SHG signal at the transition confirms that the high-pressure polymorph is noncentrosymmetric. The phase transition involves a significant discontinuous decrease of the unit-cell volume by 6%, which is mainly due to a strong contraction of the $a$ lattice parame…

DiffractionPhase transitionMaterials scienceEnthalpy02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCrystallographyLattice constantPhase (matter)Acentric factorX-ray crystallographyddc:530Surface second harmonic generation0210 nano-technologyPhysical Review B
researchProduct

Ambient-temperature high-pressure-induced ferroelectric phase transition in CaMnTi2O6

2017

The ferroelectric to paraelectric phase transition of multiferroic ${\mathrm{CaMnTi}}_{2}{\mathrm{O}}_{6}$ has been investigated at high pressures and ambient temperature by second-harmonic generation (SHG), Raman spectroscopy, and powder and single-crystal x-ray diffraction. We have found that ${\mathrm{CaMnTi}}_{2}{\mathrm{O}}_{6}$ undergoes a pressure-induced structural phase transition ($P{4}_{2}mc\ensuremath{\rightarrow}P{4}_{2}/nmc$) at $\ensuremath{\sim}7\phantom{\rule{0.16em}{0ex}}\mathrm{GPa}$ to the same paraelectric structure found at ambient pressure and ${T}_{c}=630\phantom{\rule{0.16em}{0ex}}\mathrm{K}$. The continuous linear decrease of the SHG intensity that disappears at 7 …

DiffractionBulk modulusPhase transitionMaterials scienceEquation of state (cosmology)02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesFerroelectricitysymbols.namesakeCrystallography0103 physical sciencessymbolsMultiferroics010306 general physics0210 nano-technologyRaman spectroscopyIntensity (heat transfer)Physical Review B
researchProduct