0000000000131623

AUTHOR

R.i. Eglitis

Ab initiocalculations of BaTiO3(111) surfaces

The article presents the results of calculations of polar (111) surface relaxations and energetics using the ab initio code CRYSTAL and a hybrid description of exchange and correlation. Using a hybrid B3LYP approach, the surface relaxation has been calculated for the two possible Ti and BaO3 BaTiO3 (111) surface terminations. For both Ti- and BaO3-terminated BaTiO3 (111) surfaces, the upper layer atoms relax inward. The second layer atoms, with the sole exception of Ti-terminated BaTiO3 (111) surface Ba atom, relax outward. The calculated surface relaxation energy for Ti-terminated BaTiO3 (111) surface is more than two times larger than the surface relaxation energy for BaO3-terminated BaTi…

research product

First principles calculations of SrZrO3 bulk and ZrO2-terminated (001) surface F centers

Abstract Using a supercell model and B3PW hybrid exchange-correlation functional in the framework of the density functional theory (DFT), as it is implemented in the CRYSTAL computer code, we performed ab initio calculations for the F -center located in the SrZrO 3 bulk and on the ZrO 2 -terminated (001) surface. According to the results of performed relaxation of atoms around the defect, two nearest Zr and four Sr atoms are repulsed, but all oxygen atoms are attracted towards both, the bulk and (001) surface F -center. The displacement magnitudes of atoms surrounding the bulk F -center are smaller than around the (001) surface F -center. The B3PW calculated SrZrO 3 bulk optical band gap (5…

research product

Semi-Empirical Calculations of Hole Polarons in MgO and KNbO3 Crystals

The semi-empirical quantum chemical INDO method has been used for cluster and large unit cell calculations of hole polarons bound to a cation vacancy in highly ionic MgO and partly covalent perovskite KNbO 3 . In both cases a hole is well localized on an oxygen atom displaced towards the vacancy. The calculated optical and thermal ionization energies for V - and V 0 centers are in excellent agreement with experimental data for MgO. In KNbO 3 we predict the existence of one-site and two-site (molecular) polarons with close absorption energies (1 e V). The relevant experimental data are discussed.

research product