0000000000131746
AUTHOR
Ana M. C. Ruedin
A New Wavelet-Based Texture Descriptor for Image Retrieval
This paper presents a novel texture descriptor based on the wavelet transform. First, we will consider vertical and horizontal coefficients at the same position as the components of a bivariate random vector. The magnitud and angle of these vectors are computed and its histograms are analyzed. This empirical magnitud histogram is modelled by using a gamma distribution (pdf). As a result, the feature extraction step consists of estimating the gamma parameters using the maxima likelihood estimator and computing the circular histograms of angles. The similarity measurement step is done by means of the well-known Kullback-Leibler divergence. Finally, retrieval experiments are done using the Bro…
A statistical model for magnitudes and angles of wavelet frame coefficients and its application to texture retrieval
Abstract This paper presents a texture descriptor based on wavelet frame transforms. At each position in the image, and for each resolution level, we consider both vertical and horizontal wavelet detail coefficients as the components of a bivariate random vector. The magnitudes and angles of these vectors are computed. At each level the empirical histogram of magnitudes is modeled by a Generalized Gamma distribution, and the empirical histogram of angles is modeled by a different version of the von Mises distribution that accounts for histograms with 2 modes. Each texture is characterized by few parameters. A new distance is presented (based on the Kullback–Leibler divergence) that allows g…