Pseudoscalar decays into lepton pairs from rational approximants
The pseudoscalar decays into lepton pairs P! ‘‘ are analyzed with the machinery of Canterbury approximants, an extension of Pade approximants to bivariate functions. This framework provides an ideal model-independent approach to implement all our knowledge of the pseudoscalar transition form factors driving these decays, can be used for data analysis, and allows to include experimental data and theoretical constraints in an easy way, and determine a systematic error. We find that previous theoretical estimates for these branching ratios have underestimated their theoretical uncertainties. From our updated results, the existing experimental discrepancies for p 0 ! e + e and h! m + m channels…