Study of ambient light influence for three-dimensional scanners based on structured light
Ambient light in a scene can introduce errors into range data from most commercial three-dimensional range scanners, particularly scanners that are based on projected patterns and structured lighting. We study the effects of ambient light on a specific commercial scanner. We further present a method for characterizing the range accuracy as a function of ambient light distortions. After a brief review of related research, we first describe the capabilities of the scanner we used and define the experimental setup for our study. Then we present the results of the range characterization relative to ambient light. In these results, we note a systematic error source that appears to be an artifact…
Genetic algorithms for 3d reconstruction with supershapes
Supershape model is a recent primitive that represents numerous 3D shapes with several symmetry axes. The main interest of this model is its capability to reconstruct more complex shape than superquadric model with only one implicit equation. In this paper we propose a genetic algorithms to re-construct a point cloud using those primitives. We used the pseudo-Euclidean distance to introduce a threshold to handle real data imperfection and speed up the process. Simulations using our proposed fitness functions and a fitness function based on inside-outside function show that our fitness function based on the pseudo-Euclidean distance performs better.