0000000000131892

AUTHOR

Han Wang

Thickness dependence of anomalous Hall conductivity in L10-FePt thin film

L10 ordered alloys are ideal models for studying the anomalous Hall effect (AHE), which can be used to distinguish the origin from intrinsic (from band structure) or from extrinsic effects (from impurity scatterings). In the bulk limit of L10 ordered FePt films, the AHE is considered to be dominated by the intrinsic contribution, which mainly comes from the strong spin-orbit interaction (SOI) of Pt atoms and exchange-splitting of Fe atoms. The study of anomalous Hall conductivity (AHC) of L10-FePt thin films is of particular interest for its application in spintronic devices. In order to reduce the effects of defects such as grain boundaries, we chose SrTiO3 as the substrate which has a ver…

research product

Volume IV The DUNE far detector single-phase technology

This document was prepared by the DUNE collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. The DUNE collaboration also acknowledges the international, national, and regional funding agencies supporting the institutions who have contributed to completing this Technical Design Report.

research product

Electrospun TiO2 embedded nanofibers for photocatalytic applications

The development of photocatalysts with low cost, high reactivity and easy recovery provides great potentials for environmental remediation. In this study, polyacrylonitrile (PAN) nanofibers containing titanium dioxide ([Formula: see text]) nanoparticles were successfully fabricated using a facile electrospinning technique. The effects of [Formula: see text] content, PAN concentration and thermal treatment on the adsorption and photocatalysis properties of [Formula: see text] nanofibers have been investigated. The results indicate that the embedded [Formula: see text] nanofibers possess the property to effectively decompose rhodamine B (RhB) under simulated sunlight irradiation. The enhance…

research product

Electrical switching of perpendicular magnetization in a single ferromagnetic layer

We report on the efficient spin-orbit torque (SOT) switching in a single ferromagnetic layer induced by a new type of inversion asymmetry, the composition gradient. The SOT of 6- to 60-nm epitaxial FePt thin films with a $L{1}_{0}$ phase is investigated. The magnetization of the FePt single layer can be reversibly switched by applying electrical current with a moderate current density. Different from previously reported SOTs which either decreases with or does not change with the film thickness, the SOT in FePt increases with the film thickness. We found the SOT in FePt can be attributed to the composition gradient along the film normal direction. A linear correlation between the SOT and th…

research product

Volume I. Introduction to DUNE

Journal of Instrumentation 15(08), T08008 (1-228) (2020). doi:10.1088/1748-0221/15/08/T08008

research product

5th International Symposium on Focused Ultrasound

Introduction Breast fibroadenomata (FAD) are benign lesions which occur in about 10 % of all women. Diagnosis is made by triple assessment (physical examination, imaging and/or histopathology/cytology). For a definitive diagnosis of FAD, the treatment is conservative unless the patient is symptomatic. For symptomatic patients, the lumps can be surgically excised or removed interventionally by vacuum-assisted mammotomy (VAM). Ablative techniques like high-intensity focused ultrasound (HIFU), cryo-ablation and laser ablation have also been used for the treatment of FAD, providing a minimally invasive treatment without scarring or poor cosmesis. This review summarises current trials using mini…

research product

$^{222}$Rn emanation measurements for the XENON1T experiment

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $\mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribut…

research product

Projected WIMP sensitivity of the XENONnT dark matter experiment

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage…

research product

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

research product

Autophagy

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

research product

Volume III. DUNE far detector technical coordination

The preponderance of matter over antimatter in the early universe, the dynamics of the supernovae that produced the heavy elements necessary for life, and whether protons eventually decay-these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our universe, its current state, and its eventual fate. The Deep Underground Neutrino Experiment (DUNE) is an international world-class experiment dedicated to addressing these questions as it searches for leptonic charge-parity symmetry violation, stands ready to capture supernova neutrino bursts, and seeks to observe nucleon decay as a signature of a grand unified theory underlying the st…

research product