6533b859fe1ef96bd12b83b5
RESEARCH PRODUCT
Projected WIMP sensitivity of the XENONnT dark matter experiment
K. MartensM. L. BenabderrahmaneEthan BrownN. ŠArčevićA. ManfrediniG. SartorelliLaura ManentiGian Carlo TrincheroK. OdgersN. KatoM. VargasT. Marrodán UndagoitiaA. DepoianL. GrandiG. KoltmanE. López FuneA. RocchettiP. ShaginC. WittwegJ. A. M. LopesD. CoderreF. ToschiP. Di GangiC. HilsM. SelviManuel Gameiro Da SilvaA. MolinarioM. ScheibelhutJ. MahlstedtG. ZavattiniM. P. DecowskiManfred LindnerSara DiglioM. MessinaL. Scotto LavinaD. CichonMichelle GallowayT. BergerA. KopecQing LinKaixuan NiHardy SimgenF. JoergJean-pierre CussonneauA. D. FerellaJ. LongN. RuppBart PelssersYuehuan WeiMarc SchumannW. FulgioneElena AprileA. ElykovJ. YeC. TunnellD. SchulteE. AngelinoJ.m.f. Dos SantosM. IacovacciApril S. BrownE. ShockleyHan WangKeita MizukoshiF. AgostiniKatsuki HiraideR. Di StefanoSebastian LindemannJochen SchreinerL. AlthueserA. Di GiovanniJ. P. ZopounidisS. ReichardZ. XuH. LandsmanG. EurinL. LevinsonD. Ramírez GarcíaAtsushi TakedaD. MassonC. HasterokS. BruennerS. MastroianniJ. PienaarYanxi ZhangLaura BaudisD. WenzR. PeresF. ArneodoM. ClarkAuke-pieter ColijnD. BargeJoão CardosoGiacomo BrunoF. GaoB. CimminoKathrin ValeriusJ. QinR. GaiorA. MancusoRan BudnikYoshitaka ItowUwe OberlackG. VoltaCh. WeinheimerJelle AalbersC. MacolinoL. HoetzschY. MosbacherV. C. AntochiM. WeissJulien MasbouKentaro MiuchiC. TherreauJ. R. AngevaareJ. HowlettH. QiuJ. PalacioJ. PalacioShingo KazamaF. SemeriaM. AlfonsiJan ConradMasanori KobayashiMasaki YamashitaMasaki YamashitaFabrizio MarignettiL. BellagambaP. GaemersF. LombardiV. PizzellaJ. NaganomaShigetaka MoriyamaM. MurraC. CapelliK. MoråK. MoråT. ZhuF. D. AmaroGuillaume PlanteBoris BauermeisterD. ThersR. F. Langsubject
WIMP nucleon: scatteringdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsHadronDark matterFOS: Physical sciencesElementary particledark matter: direct detection01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentNONuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONPE2_2WIMPPE2_1electron: recoil0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPE2_4Dark matter experimentComputingMilieux_MISCELLANEOUSactivity reportnucleus: recoilPhysicsxenon: liquid010308 nuclear & particles physicsbackgroundAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Dark matter experiments dark matter simulationssensitivityBaryonDark matter experimentsDark matter simulationsWeakly interacting massive particlesDark matter experiments; Dark matter simulationsNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysicsdescription
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10−48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10−48 cm2 (5.0×10−48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10−43 cm2 (6.0×10−42 cm2).
year | journal | country | edition | language |
---|---|---|---|---|
2020-11-01 | Journal of Cosmology and Astroparticle Physics |