0000000000086226

AUTHOR

Masanori Kobayashi

Excess electronic recoil events in XENON1T

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$,…

research product

Search for Coherent Elastic Scattering of Solar B8 Neutrinos in the XENON1T Dark Matter Experiment

We report on a search for nuclear recoil signals from solar $^8$B neutrinos elastically scattering off xenon nuclei in XENON1T data, lowering the energy threshold from 2.6 keV to 1.6 keV. We develop a variety of novel techniques to limit the resulting increase in backgrounds near the threshold. No significant $^8$B neutrino-like excess is found in an exposure of 0.6 t $\times$ y. For the first time, we use the non-detection of solar neutrinos to constrain the light yield from 1-2 keV nuclear recoils in liquid xenon, as well as non-standard neutrino-quark interactions. Finally, we improve upon world-leading constraints on dark matter-nucleus interactions for dark matter masses between 3 GeV/…

research product

Search for inelastic scattering of WIMP dark matter in XENON1T

We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.89 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2$\sigma$. A profile-likelihood ratio analysis is used to set upper limits on the cross-section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c${}^2$, with the strongest upper limit of $3.3 \time…

research product

Light Dark Matter Search with Ionization Signals in XENON1T

We report constraints on light dark matter (DM) models using ionization signals in the XENON1T experiment. We mitigate backgrounds with strong event selections, rather than requiring a scintillation signal, leaving an effective exposure of (22±3) tonne day. Above ∼0.4 keVee, we observe &lt;1 event/(tonne day keVee), which is more than 1000 times lower than in similar searches with other detectors. Despite observing a higher rate at lower energies, no DM or CEvNS detection may be claimed because we cannot model all of our backgrounds. We thus exclude new regions in the parameter spaces for DM-nucleus scattering for DM masses mχ within 3–6 GeV/c2, DM-electron scattering for mχ&gt;30 MeV/c2, a…

research product

Projected WIMP sensitivity of the XENONnT dark matter experiment

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage…

research product