6533b7cffe1ef96bd1259a1e

RESEARCH PRODUCT

Excess electronic recoil events in XENON1T

A. ManfrediniL. Scotto LavinaA. D. FerellaHongwei WangL. LevinsonCh. WeinheimerD. MassonJ. PienaarQing LinAuke-pieter ColijnLaura BaudisE. AngelinoE. AngelinoJoão CardosoT. ZhuJ. R. AngevaareF. GaoJelle AalbersP. GaemersF. ToschiA. Di GiovanniR. Di StefanoW. FulgioneGabriella SartorelliM. ClarkKentaro MiuchiC. TherreauYuehuan WeiF. D. AmaroH. LandsmanA. DepoianGuillaume PlanteJ. YeM. SelviJoern MahlstedtM. L. BenabderrahmaneEthan BrownD. WenzJ. QinM. AlfonsiR. PeresD. SchulteJ. LongJ. P. ZopounidisS. MoriyamaBoris BauermeisterG. EurinR. GaiorC. HasterokRan BudnikJ.m.f. Dos SantosA. KopecXavier MougeotYoshitaka ItowMichelle GallowayC. MacolinoF. AgostiniF. AgostiniN. KatoJ. PalacioE. ShockleyA. MancusoM. WeissS. ReichardYanxi ZhangL. GrandiJ. SchreinerSebastian LindemannM. P. DecowskiShingo KazamaLaura ManentiG. KoltmanMarc SchumannManfred LindnerR. F. LangE. López FuneN. RuppP. Di GangiGuido ZavattiniF. LombardiJan ConradS. MastroianniUwe OberlackC. HilsMasanori KobayashiF. MarignettiS. BruennerKaixuan NiK. MizukoshiF. SemeriaD. Ramírez GarcíaV. PizzellaN. ŠArčevićGiacomo BrunoT. BergerSara DiglioA. TakedaMasaki YamashitaY. MosbacherJ. HowlettGian Carlo TrincheroH. QiuA. ElykovLorenzo BellagambaF. ArneodoKatsuki HiraideJ. NaganomaA. RocchettiD. BargeB. CimminoG. VoltaM. MurraV. C. AntochiC. CapelliP. ShaginL. HoetzschK. MoråJulien MasbouH. SimgenDominique ThersC. WittwegK. OdgersD. CoderreManuel Gameiro Da SilvaA. MolinarioM. ScheibelhutApril S. BrownJean-pierre CussonneauZ. XuD. CichonBart PelssersK. MartensM. MessinaElena AprileF. JoergC. TunnellM. VargasT. Marrodán UndagoitiaJ. A. M. LopesM. IacovacciL. Althueser

subject

xenon: targetaxionssolar axionmagnetic momentdimension: 3neutrino: solarPhysics beyond the Standard ModelSolar neutrinodark matter: direct detection01 natural sciences7. Clean energyHigh Energy Physics - ExperimentDark matter direct detection axionHigh Energy Physics - Experiment (hep-ex)neutrinoXENONHigh Energy Physics - Phenomenology (hep-ph)background: lowRecoilelectron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysParticle Physics Experimentscoupling: (axion 2electron)multi-purpose particle detectornuclear instrumentationComputingMilieux_MISCELLANEOUSinstrumentationPhysicsxenon: liquidboson: dark matteraxion 2nucleontritiumnew physics: search forsemileptonic decayboson: vectortensionneutrino: magnetic momentHigh Energy Physics - Phenomenologyaxion 2photonlow backgroundbosonNeutrinoionizing radiationNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)dark matter detectorelectronic recoilElectron captureXENON1T detectorDark matterlow-energy electronic recoil dataFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterNONuclear physicsPE2_2PE2_1tritium: semileptonic decay0103 physical sciencessolar axion modelsurface[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]axion: couplingPE2_4010306 general physicspseudoscalarAxiondark matter: vectordark matter XENON1T detector electronic recoilsolar neutrinodetectorDark Matter Axions Beta Decay Liquid Xenon TPC010308 nuclear & particles physicsaxion 2electroncoupling: (axion 2nucleon)dark matter: detectormodel: axionGran Sassometrology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axionstellar constraintscoupling: (axion 2photon)High Energy Physics::Experimentparticle dark matterdirect detectionbeta decayaxion: solar[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results

description

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$, $g_{ae}g_{an}^{eff}<4.8\times 10^{-18}$, and $g_{ae}g_{a\gamma}<7.7\times10^{-22} GeV^{-1}$, and excludes either $g_{ae}=0$ or $g_{ae}g_{a\gamma}=g_{ae}g_{an}^{eff}=0$. The neutrino magnetic moment signal is similarly favored over background at 3.2$\sigma$ and a confidence interval of $\mu_{\nu} \in (1.4,2.9)\times10^{-11}\mu_B$ (90% C.L.) is reported. Both results are in strong tension with stellar constraints. The excess can also be explained by $\beta$ decays of tritium at 3.2$\sigma$ with a trace amount that can neither be confirmed nor excluded with current knowledge of its production and reduction mechanisms. The significances of the solar axion and neutrino magnetic moment hypotheses are reduced to 2.0$\sigma$ and 0.9$\sigma$, respectively, if an unconstrained tritium component is included in the fitting. With respect to bosonic dark matter, the excess favors a monoenergetic peak at ($2.3\pm0.2$) keV (68% C.L.) with a 3.0$\sigma$ global (4.0$\sigma$ local) significance. We also consider the possibility that $^{37}$Ar may be present in the detector and yield a 2.82 keV peak. Contrary to tritium, the $^{37}$Ar concentration can be tightly constrained and is found to be negligible.

10.1103/physrevd.102.072004https://hal.archives-ouvertes.fr/hal-03431778