0000000000086237

AUTHOR

Masaki Yamashita

showing 6 related works from this author

Excess electronic recoil events in XENON1T

2020

We report results from searches for new physics with low-energy electronic recoil data recorded with the XENON1T detector. With an exposure of 0.65 t-y and an unprecedentedly low background rate of $76\pm2$ events/(t y keV) between 1 and 30 keV, the data enables sensitive searches for solar axions, an enhanced neutrino magnetic moment, and bosonic dark matter. An excess over known backgrounds is observed at low energies and most prominent between 2 and 3 keV. The solar axion model has a 3.4$\sigma$ significance, and a 3D 90% confidence surface is reported for axion couplings to electrons, photons, and nucleons. This surface is inscribed in the cuboid defined by $g_{ae}<3.8 \times 10^{-12}$,…

xenon: targetaxionssolar axionmagnetic momentdimension: 3neutrino: solarPhysics beyond the Standard ModelSolar neutrinodark matter: direct detection01 natural sciences7. Clean energyHigh Energy Physics - ExperimentDark matter direct detection axionHigh Energy Physics - Experiment (hep-ex)neutrinoXENONHigh Energy Physics - Phenomenology (hep-ph)background: lowRecoilelectron: recoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]beta-raysParticle Physics Experimentscoupling: (axion 2electron)multi-purpose particle detectornuclear instrumentationComputingMilieux_MISCELLANEOUSinstrumentationPhysicsxenon: liquidboson: dark matteraxion 2nucleontritiumnew physics: search forsemileptonic decayboson: vectortensionneutrino: magnetic momentHigh Energy Physics - Phenomenologyaxion 2photonlow backgroundbosonNeutrinoionizing radiationNucleonAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)dark matter detectorelectronic recoilElectron captureXENON1T detectorDark matterlow-energy electronic recoil dataFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]dark matterNONuclear physicsPE2_2PE2_1tritium: semileptonic decay0103 physical sciencessolar axion modelsurface[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]axion: couplingPE2_4010306 general physicspseudoscalarAxiondark matter: vectordark matter XENON1T detector electronic recoilsolar neutrinodetectorDark Matter Axions Beta Decay Liquid Xenon TPC010308 nuclear & particles physicsaxion 2electroncoupling: (axion 2nucleon)dark matter: detectormodel: axionGran Sassometrology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]axionstellar constraintscoupling: (axion 2photon)High Energy Physics::Experimentparticle dark matterdirect detectionbeta decayaxion: solar[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]experimental results
researchProduct

Search for inelastic scattering of WIMP dark matter in XENON1T

2021

We report the results of a search for the inelastic scattering of weakly interacting massive particles (WIMPs) in the XENON1T dark matter experiment. Scattering off $^{129}$Xe is the most sensitive probe of inelastic WIMP interactions, with a signature of a 39.6 keV de-excitation photon detected simultaneously with the nuclear recoil. Using an exposure of 0.89 tonne-years, we find no evidence of inelastic WIMP scattering with a significance of more than 2$\sigma$. A profile-likelihood ratio analysis is used to set upper limits on the cross-section of WIMP-nucleus interactions. We exclude new parameter space for WIMPs heavier than 100 GeV/c${}^2$, with the strongest upper limit of $3.3 \time…

xenon: targetPhotonPhysics::Instrumentation and DetectorsParameter space01 natural sciencesWIMP: dark matterHigh Energy Physics - Experiment; High Energy Physics - Experiment; astro-ph.COHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)XENONRecoilWIMPWIMP nucleus: cross section[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matterparameter spaceNuclear ExperimentComputingMilieux_MISCELLANEOUSnucleus: recoilPhysicsDark Matter Inelastic scattering XENON Direct Dark MatterPhysicsphotonAstrophysics::Instrumentation and Methods for AstrophysicsDirect Dark MatterWeakly interacting massive particlesastro-ph.COsignatureAstrophysics - Cosmology and Nongalactic AstrophysicsParticle physicsInelastic scatteringCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesWIMP: massAstrophysics::Cosmology and Extragalactic AstrophysicsInelastic scatteringNOPE2_2PE2_10103 physical sciencesddc:530010306 general physics010308 nuclear & particles physicsScatteringWIMP nucleus: interactionDarkmatterWIMP: interactionHigh Energy Physics::Experiment[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics and astroparticle physicsexperimental resultsPhysical Review D. Particles, Fields, Gravitation, and Cosmology
researchProduct

Erratum: Search for Light Dark Matter in XENON10 Data [Phys. Rev. Lett.107, 051301 (2011)]

2013

PhysicsDark matterGeneral Physics and AstronomyAstrophysicsLight dark matterParticle detectorPhysical Review Letters
researchProduct

$^{222}$Rn emanation measurements for the XENON1T experiment

2021

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $\mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribut…

Physics - Instrumentation and DetectorsPhysics and Astronomy (miscellaneous)Radon emanationFOS: Physical scienceschemistry.chemical_element01 natural sciencesNOHigh Energy Physics - Experimentradon: nuclideHigh Energy Physics - Experiment (hep-ex)XENONXenon222 RnPE2_2PE2_10103 physical sciencesActivity concentration[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Dark Matter[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsEngineering (miscellaneous)background: radioactivityPhysicsradon: admixture010308 nuclear & particles physicsdetector: surfacescreeningInstrumentation and Detectors (physics.ins-det)chemistryXenon Dark matter 222 Rn radioactivityDark Matter Radon emanation XENON Direct Dark MatterDirect Dark MatterradioactivityAtomic physics
researchProduct

Projected WIMP sensitivity of the XENONnT dark matter experiment

2020

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10−3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage…

WIMP nucleon: scatteringdata analysis methodCosmology and Nongalactic Astrophysics (astro-ph.CO)Physics - Instrumentation and DetectorsHadronDark matterFOS: Physical sciencesElementary particledark matter: direct detection01 natural sciencesWIMP: dark matterHigh Energy Physics - ExperimentNONuclear physicsHigh Energy Physics - Experiment (hep-ex)XENONPE2_2WIMPPE2_1electron: recoil0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutron[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsPE2_4Dark matter experimentComputingMilieux_MISCELLANEOUSactivity reportnucleus: recoilPhysicsxenon: liquid010308 nuclear & particles physicsbackgroundAstronomy and AstrophysicsInstrumentation and Detectors (physics.ins-det)Dark matter experiments dark matter simulationssensitivityBaryonDark matter experimentsDark matter simulationsWeakly interacting massive particlesDark matter experiments; Dark matter simulationsNucleon[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of Cosmology and Astroparticle Physics
researchProduct

A search for light dark matter in XENON10 data

2011

We report results of a search for light (3.5x10^{-42} cm^2, for a dark matter particle mass m_{\chi}=8 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.

Cosmology and Nongalactic Astrophysics (astro-ph.CO)LightDark matterGeneral Physics and AstronomyFOS: Physical sciencesElectronsElementary particleElectron01 natural sciencesParticle detectorHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesHumansScattering Radiation010306 general physicsLight dark matterNuclear PhysicsPhysicsPhotons010308 nuclear & particles physicsScatteringFermionBaryonHigh Energy Physics - PhenomenologyData Interpretation StatisticalCosmic RadiationAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct