0000000000132211

AUTHOR

Francesca Bovolo

0000-0003-3104-7656

showing 3 related works from this author

A support vector domain method for change detection in multitemporal images

2010

This paper formulates the problem of distinguishing changed from unchanged pixels in multitemporal remote sensing images as a minimum enclosing ball (MEB) problem with changed pixels as target class. The definition of the sphere-shaped decision boundary with minimal volume that embraces changed pixels is approached in the context of the support vector formalism adopting a support vector domain description (SVDD) one-class classifier. SVDD maps the data into a high dimensional feature space where the spherical support of the high dimensional distribution of changed pixels is computed. Unlike the standard SVDD, the proposed formulation of the SVDD uses both target and outlier samples for defi…

PixelComputer sciencebusiness.industryFeature vectorComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONThresholdingMultispectral pattern recognitionSupport vector machineKernel methodArtificial IntelligenceComputer Science::Computer Vision and Pattern RecognitionSignal ProcessingOutlierDecision boundaryComputer visionComputer Vision and Pattern RecognitionArtificial intelligencebusinessSoftwareChange detectionPattern Recognition Letters
researchProduct

Discovering single classes in remote sensing images with active learning

2012

When dealing with supervised target detection, the acquisition of labeled samples is one of the most critical phases: the samples must be yet representative of the class of interest, but must also be found among a vast majority of non-target examples. Moreover, the efficiency of the search is also an issue, since the samples labeled as background are not used by target detectors such as the support vector data description (SVDD). In this work we propose a competitive and effective approach to identify the most relevant training samples for one-class classification based on the use of an active learning strategy. The SVDD classifier is first trained with insufficient target examples. It is t…

Active learningComputer scienceActive learning (machine learning)business.industryPattern recognitionSemi-supervised learningRemote sensingMachine learningcomputer.software_genreSupport vector machineActive learningLife ScienceSupport Vector Data DescriptionArtificial intelligencebusinessClassifier (UML)computerChange detection2012 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

An Automatic System for the Analysis and Classification of Human Atrial Fibrillation Patterns from Intracardiac Electrograms

2008

This paper presents an automatic system for the analysis and classification of atrial fibrillation (AF) patterns from bipolar intracardiac signals. The system is made up of: 1) a feature- extraction module that defines and extracts a set of measures potentially useful for characterizing AF types on the basis of their degree of organization; 2) a feature-selection module (based on the Jeffries-Matusita distance and a branch and bound search algorithm) identifying the best subset of features for discriminating different AF types; and 3) a support vector machine technique-based classification module that automatically discriminates the AF types according to the Wells' criteria. The automatic s…

Signal processingComputer scienceFeature extractionBiomedical EngineeringFeature extraction and selectionFeature selectionSensitivity and SpecificityIntracardiac injectionPattern Recognition AutomatedArtificial IntelligenceSearch algorithmAtrial FibrillationmedicineHumansDiagnosis Computer-AssistedIntracardiac ElectrogramArrhythmia organizationSignal processingmedicine.diagnostic_testbusiness.industrySupport vector machines (SVMs)Reproducibility of ResultsPattern recognitionAtrial fibrillationHuman atrial fibrillationmedicine.diseaseSupport vector machineSettore ING-INF/06 - Bioingegneria Elettronica E InformaticaAutomatic classificationArtificial intelligenceIntracardiac electrogrambusinessElectrocardiographyAlgorithmsIEEE Transactions on Biomedical Engineering
researchProduct