0000000000132339

AUTHOR

Maria Besora

0000-0002-6656-5827

Cover Picture: Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles (Angew. Chem. Int. Ed. 42/2018)

research product

A Quantitative Model for Alkane Nucleophilicity Based on C−H Bond Structural/Topological Descriptors

A first quantitative model for calculating the nucleophilicity of alkanes is described. A statistical treatment was applied to the analysis of the reactivity of 29 different alkane C−H bonds towards in situ generated metal carbene electrophiles. The correlation of the recently reported experimental reactivity with two different sets of descriptors comprising a total of 86 parameters was studied, resulting in the quantitative descriptor‐based alkane nucleophilicity (QDEAN) model. This model consists of an equation with only six structural/topological descriptors, and reproduces the relative reactivity of the alkane C−H bonds. This reactivity can be calculated from parameters emerging from th…

research product

Competitive and Selective Csp3Br versus Csp2Br Bond Activation in Palladium-Catalysed Suzuki Cross-Coupling: An Experimental and Theoretical Study of the Role of Phosphine Ligands

Phosphine ligands have been demonstrated to have an effect on reactivity and selectivity in the competitive intramolecular palladium-catalysed Suzuki-Miyaura coupling of dibromo sulfoxide 1a possessing two different hybridised electrophilic carbons. It was found that the bromine bond to the sp(3)-hybridised carbon is selectively replaced in the presence of unhindered phosphines such as PPh(3) or xantphos. The use of hindered phosphine ligands such as P(o-tol)(3) and P(1-naphthyl)(3) reversed the selectivity, conducting the cross-coupling at the Csp(2)-Br. Identical trends were observed in external competition experiments carried out with bromomethyl sulfoxide and different substituted bromo…

research product

Titelbild: Measuring the Relative Reactivity of the Carbon–Hydrogen Bonds of Alkanes as Nucleophiles (Angew. Chem. 42/2018)

research product

Hydrogen bonding and proton transfer involving the trihydride complexes Cp*M(dppe)H 3 (M = Mo, W) and fluorinated alcohols: the competitive role of the hydride ligands and metal

International audience; The protonation of complexes Cp*M(dppe)H3 (dppe is ethylenebis(diphenylphosphine), M = Mo (1), W (2)) by a variety of fluorinated alcohols of different acid strength (FCH2CH2OH, CF3CH2OH, (CF3)2CHOH, and (CF3)3COH) was investigated experimentally by the variable temperature spectroscopic methods (IR, NMR) and stopped-flow technique (UV-Vis). The structures of the hydrogen-bonded and proton transfer products were studied by DFT calculations. In agreement with the calculation results, the IR data suggest that the initial hydrogen bond is established with a hydride site for complex 1 and with the metal site for complex 2. However, no intermediate dihydrogen complex foun…

research product

Measuring the Relative Reactivity of the Carbon-Hydrogen Bonds of Alkanes as Nucleophiles

We report quantitative measurements of the relative reactivities of a series of C-H bonds of gaseous or liquid CnH2n+2 alkanes (n = 1-8, 29 different C-H bonds) towards insitu generated electrophiles (copper, silver, and rhodium carbenes), with methane as the reference. This strategy surpasses the drawback of previous model reactions of alkanes with strong electrophiles suffering from C-C cleavage processes, which precluded direct comparison of the relative reactivities of alkane C-H bonds.

research product