Period-multiplying bifurcations and multifurcations in conservative mappings
The authors have investigated numerically and analytically the period-doubling bifurcations and multifurcations of the periodic orbits of the conservative sine-Gordon mappings. They have derived a general equation for the appearance of multifurcations in conservative mappings. In agreement with many recent studies, they also find evidence that such mappings possess universality properties. They also discuss the role of multifurcations in conservative mappings exhibiting chaotic behaviour.