0000000000132667
AUTHOR
Thomas Malcolm Chapman
Applicability of Interference Coordination in Highly Loaded HSUPA Network
This paper evaluates the performance of highly loaded High Speed Uplink Packet Access (HSUPA) network with and without network wide static Interference Coordination (IC). IC alternates the priorities for user transmission periods throughout the network to achieve reduced interference levels and higher performance. A large variety of combinations including, e.g., different schedulers, cell center/edge user definitions (user splits) and interference targets are investigated in this paper. Performance is analyzed using a quasi-static system level simulator which is also used to support Third Generation Partnership Project (3GPP) standardization work. The simulator contains detailed and commonl…
Enhanced LMMSE equalizer for high-speed single frequency network in HSDPA
Currently, considerable interest has been shown in the research and standardization communities in multicell transmission schemes for HSPA, with a number of possible schemes under discussion that include Multiflow, Fast Cell Switching (FCS) and High-Speed Single Frequency Network (HS-SFN). In particular, HS-SFN is a promising technique that not only combines received energy from participating cells, but also reduces intercell interference with low UE complexity. In principle, HS-SFN can be implemented with a small modification to an LMMSE receiver at the UE. This paper introduces a more advanced LMMSE equalizer for High-Speed Single Frequency Network in HSDPA that achieves further performan…
Introduction of Multiflow for HSDPA
This paper introduces a multi-cell transmission scheme for High-Speed Downlink Packet Access (HSDPA) networks, called Multiflow. In this concept, downlink data is transmitted to a user terminal at the border of two cells from one or both of the cells. The cells may belong to same NodeB or to two different NodeBs. The data flows are separated by different scrambling codes used by each associated cell, thus the flows can be treated independently. This provides increased multi-user diversity by means of flexibility in downlink resource management, in addition to the spatial diversity of multiple transmission locations. Another important gain mechanism for this scheme is realized by short-term …
Enhancing HSUPA system level performance with dual carrier capability
The purpose of this paper is to analyze how dual carrier capability can enhance High Speed Uplink Packet Access performance in comparison to using only single carrier. Dual carrier operation gives the User Equipment the possibility to transmit simultaneously using two 5 MHz bands, theoretically doubling the peak data rates and user throughput. The analysis is conducted with a system level simulation tool. This paper first indicates with single carrier simulations that, especially in small cells, terminals have spare power available for dual carrier operation. These observations are verified with dual carrier simulations by showing that the burst throughput can be practically doubled. In the…
Extended HSUPA coverage and enhanced battery saving opportunities with multiple TTI lengths
3GPP has specified that terminals can be configured to use either 2 or 10 ms transmission time interval in high speed uplink packet access systems. The purpose of this paper is to evaluate the benefit of exploiting a mixture of both of the transmissions time intervals within a cell instead of only one. The study is quantified by means of studying the achievable coverage of voice over IP and possible battery saving benefits. The analysis is conducted with a system level simulator modeling network and terminal behavior in detail. The paper indicates that utilizing a mixture of both transmission time intervals can extend coverage whilst providing enhanced battery saving opportunities.