0000000000132749

AUTHOR

Julio Becerra Guerrero

showing 5 related works from this author

Group-Theoretic analysis of the mixing angle in the electroweak gauge group

1996

In this paper the authors provide strong mathematical support for the idea that the experimentally measured magnitude 1 - M{sub W}{sup 2}/M{sub Z}{sup 2} associated with sin{sup 2}{theta}{sub w} in the standard model of electroweak interactions cannot be simultaneously identified with the squared quotient of the electric charge by the SU(2) charge, e{sup 2}/g{sup 2}. In fact, the natural, mathematical requirement that the Weinberg rotation between the gauge fields associated with the third component of the {open_quotes}weak isospin{close_quotes} (T{sub 3}) and the hypercharge (Y) proceeds from a global Lie-group homomorphism of the SU(2) {circle_times} U(1){sub y} gauge group in some locall…

PhysicsHyperchargeParticle physicsPhysics and Astronomy (miscellaneous)Gauge groupGeneral MathematicsLie algebraElectroweak interactionLie groupGrand Unified TheoryCharge (physics)Weinberg angleMathematical physicsInternational Journal of Theoretical Physics
researchProduct

Higher-Order Differential Operators on a Lie Group and Quantization

1995

This talk is devoted mainly to the concept of higher-order polarization on a group, which is introduced in the framework of a Group Approach to Quantization, as a powerful tool to guarantee the irreducibility of quantizations and/or representations of Lie groups in those anomalous cases where the Kostant-Kirilov co-adjoint method or the Borel-Weyl-Bott representation algorithm do not succeed.

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsGroup (mathematics)Quantization (signal processing)FOS: Physical sciencesLie groupAstronomy and AstrophysicsDifferential operatorAtomic and Molecular Physics and OpticsAlgebraHigh Energy Physics - Theory (hep-th)IrreducibilityOrder (group theory)Representation (mathematics)Mathematics::Representation Theory
researchProduct

Generalized Conformal Symmetry and Extended Objects from the Free Particle

1998

The algebra of linear and quadratic functions of basic observables on the phase space of either the free particle or the harmonic oscillator possesses a finite-dimensional anomaly. The quantization of these systems outside the critical values of the anomaly leads to a new degree of freedom which shares its internal character with spin, but nevertheless features an infinite number of different states. Both are associated with the transformation properties of wave functions under the Weyl-symplectic group $WSp(6,\Re)$. The physical meaning of this new degree of freedom can be established, with a major scope, only by analysing the quantization of an infinite-dimensional algebra of diffeomorphi…

PhysicsHigh Energy Physics - TheoryNuclear and High Energy PhysicsFree particleFOS: Physical sciencesAstronomy and AstrophysicsObservableEconomía AplicadaQuadratic functionAtomic and Molecular Physics and OpticsQuantization (physics)Theoretical physicsHigh Energy Physics - Theory (hep-th)Conformal symmetryAnomalíasPhase spaceWave functionCuantización de sistemasHarmonic oscillator
researchProduct

Banach spaces where convex combinations of relatively weakly open subsets of the unit ball are relatively weakly open

2018

We introduce and study Banach spaces which have property CWO, i.e., every finite convex combination of relatively weakly open subsets of their unit ball is open in the relative weak topology of the unit ball. Stability results of such spaces are established, and we introduce and discuss a geometric condition---property (co)---on a Banach space. Property (co) essentially says that the operation of taking convex combinations of elements of the unit ball is, in a sense, an open map. We show that if a finite dimensional Banach space $X$ has property (co), then for any scattered locally compact Hausdorff space $K$, the space $C_0(K,X)$ of continuous $X$-valued functions vanishing at infinity has…

Unit sphereMathematics::Functional AnalysisPure mathematicsWeak topology46B04 46B20General Mathematics010102 general mathematicsBanach spaceHausdorff spaceSpace (mathematics)01 natural sciencesOpen and closed mapsFunctional Analysis (math.FA)Mathematics - Functional AnalysisComplex spaceFOS: MathematicsLocally compact space0101 mathematicsVDP::Mathematics and natural science: 400MathematicsStudia Mathematica
researchProduct

Algebraic Quantization, Good Operators and Fractional Quantum Numbers

1995

The problems arising when quantizing systems with periodic boundary conditions are analysed, in an algebraic (group-) quantization scheme, and the ``failure" of the Ehrenfest theorem is clarified in terms of the already defined notion of {\it good} (and {\it bad}) operators. The analysis of ``constrained" Heisenberg-Weyl groups according to this quantization scheme reveals the possibility for new quantum (fractional) numbers extending those allowed for Chern classes in traditional Geometric Quantization. This study is illustrated with the examples of the free particle on the circumference and the charged particle in a homogeneous magnetic field on the torus, both examples featuring ``anomal…

PhysicsGeometric quantizationHigh Energy Physics - TheoryFree particleQuantization (signal processing)FOS: Physical sciencesStatistical and Nonlinear PhysicsMatemática Aplicada81S1081R99Ehrenfest theoremQuantum number58F06High Energy Physics - Theory (hep-th)Fractional quantum Hall effectCuantización algebraicaCuántica de números fraccionadosAlgebraic numberQuantumMathematical PhysicsMathematical physics
researchProduct