Transitive Anosov flows and Axiom-A diffeomorphisms
AbstractLet M be a smooth compact Riemannian manifold without boundary, and ϕ:M×ℝ→M a transitive Anosov flow. We prove that if the time-one map of ϕ is C1-approximated by Axiom-A diffeomorphisms with more than one attractor, then ϕ is topologically equivalent to the suspension of an Anosov diffeomorphism.