0000000000132875

AUTHOR

Antero Lindberg

The effect of microscale pore structure on matrix diffusion—a site-specific study on tonalite

Abstract The matrix diffusion of non-sorbing tracers was studied in rocks from the Syyry area, Central Finland (SY1). The effect of alteration and weathering on rock matrix porosity and on the available pore space, which affects diffusivity, are discussed. The main rock type in the crystalline bedrock of Syyry is a slightly foliated, gray tonalite with mica gneiss inclusions as well as minor, more mafic inclusions. The total porosity and the spatial porosity distribution and microstructure of the rocks were investigated using infiltration of carbon- 14-methylmethacrylate, electron microscopy and Hg-porosimetry. The laboratory-scale diffusion experiments were performed using (1) the out-leac…

research product

Pore and mineral structure of rock using nano-tomographic imaging

ABSTRACTIn order to better understand the micrometer-scale structure of rock and its transport properties which arise from it, seven monomineral samples from two sites (Olkiluoto and Sievi, Finland) were studied with micro- and nanotomography and scanning electron microscopy. From the veined gneiss of Olkiluoto we studied biotite, potassium feldspar, plagioclase (composition of oligoclase) and cordierite, and from Sievi tonalite biotite and two grains of plagioclase (albite). These minerals were the main minerals of these samples. Samples were carefully separated and selected using heavy liquid separation and stereomicroscopy, their three dimensional structure was imaged using X-ray tomogra…

research product

Microstructure, porosity and mineralogy around fractures in Olkiluoto bedrock

3D distributions of minerals and porosities were determined for rock-core samples that included water-conducting fractures. The analysis of these samples was performed using conventional petrography methods, C-14-PMMA porosity analysis and X-ray tomography. It seems that the properties of rock around a water-conducting fracture depend on so many uncorrelated factors that no clear pattern emerged even for rock samples with a given type of fracture. We can conclude, however, that the present combination of methods can be used to infer novel structural information about alteration zones adjacent to fracture surfaces.

research product

Pore-space characterization of an altered tonalite by X-ray computed microtomography and the14C-labeled-polymethylmethacrylate method

[1] The structure of geological materials strongly affects migration processes that take place in them and are also important in their weathering and alteration processes. Further information of that structure will also be important for many applications that involve geological materials. The emphasis of this study was thus to characterize the pore structure and porosity of altered tonalite by combining different measuring techniques: X-ray tomography, the14C-polymethylmethacrylate method, electron microscopy, and argon pycnometry. Intragranular porosities were determined using chemical staining of rock surfaces. Three-dimensional distributions of minerals and porosities were evaluated with…

research product