0000000000132912

AUTHOR

Claudio Bartolone

Imprimitive groups highly transitive on blocks

We classify imprimitive groups acting highly transitively on blocks and satisfying conditions common in geometry. They can be realized as suitable subgroups of twisted wreath products.

research product

Algebraic (2, 2)-transformation groups

This paper contains the more significant part of the article with the same title that will appear in the Volume 12 of Journal of Group Theory (2009). In this paper we determine all algebraic transformation groups $G$, defined over an algebraically closed field $\sf k$, which operate transitively, but not primitively, on a variety $\Omega$, provided the following conditions are fulfilled. We ask that the (non-effective) action of $G$ on the variety of blocks is sharply 2-transitive, as well as the action on a block $\Delta$ of the normalizer $G_\Delta$. Also we require sharp transitivity on pairs $(X,Y)$ of independent points of $\Omega$, i.e. points contained in different blocks.

research product

Solvable Extensions of Nilpotent Complex Lie Algebras of Type {2n,1,1}

We investigate derivations of nilpotent complex Lie algebras of type {2n, 1, 1} with the aim to classify nilpotent complex Lie algebras the commutator ideals of which have codimension one and are nilpotent Lie algebras of type {2n, 1, 1}

research product

Unitary Groups Acting on Grassmannians Associated with a Quadratic Extension of Fields

Let (V, H) be an anisotropic Hermitian space of finite dimension over the algebraic closure of a real closed field K. We determine the orbits of the group of isometries of (V, H) in the set of K-subspaces of V . Throughout the paper K denotes a real closed field and K its algebraic closure. Then it is well known (see, for example, [4, Chapter 2], [23]; see also [8]) that K = K(i) with i = √−1. Also we let (V,H) be an anisotropic Hermitian space (with respect to the involution underlying the quadratic field extension K/K) of finite dimension n over K. In this context we consider the natural action of the unitary group U = U(V,H) of isometries of (V,H) on the set Xd of all ddimensional K-subs…

research product

The Action of the Symplectic Group Associated with a Quadratic Extension of Fields

Abstract Given a quadratic extension L/K of fields and a regular alternating space (V, f) of finite dimension over L, we classify K-subspaces of V which do not split into the orthogonal sum of two proper K-subspaces. This allows one to determine the orbits of the group SpL(V, f) in the set of K-subspaces of V.

research product

Derivations of the (n, 2, 1)-nilpotent Lie Algebra

In this paper, we study derivations of the (2, n, 1)-nilpotent Lie Algebra

research product

On some Translation Planes Admitting a Frobenius Group of Collineations

Publisher Summary This chapter presents some results concerning translation planes of dimension 2 over GF(q), where q = p r . π denotes such a plane. It is assumed that π has a collineation group F of order q 2 (q-1) satisfying the condition: there exists a point V e l ∞ such that F fixes V and acts (faithfully) as a Frobenius group on l ∞ – {V}.

research product

Nilpotent Lie algebras with 2-dimensional commutator ideals

Abstract We classify all (finitely dimensional) nilpotent Lie k -algebras h with 2-dimensional commutator ideals h ′ , extending a known result to the case where h ′ is non-central and k is an arbitrary field. It turns out that, while the structure of h depends on the field k if h ′ is central, it is independent of k if h ′ is non-central and is uniquely determined by the dimension of h . In the case where k is algebraically or real closed, we also list all nilpotent Lie k -algebras h with 2-dimensional central commutator ideals h ′ and dim k h ⩽ 11 .

research product

A class of imprimitive groups

We classify imprimitive groups inducing the alternating group A4 on the set of blocks, with the inertia subgroup satisfying some very natural geometrical conditions which force the group to operate linearly.

research product