0000000000132914
AUTHOR
Bartolone C
Imprimitive groups highly transitive on blocks
We classify imprimitive groups acting highly transitively on blocks and satisfying conditions common in geometry. They can be realized as suitable subgroups of twisted wreath products.
Unitary Groups Acting on Grassmannians Associated with a Quadratic Extension of Fields
Let (V, H) be an anisotropic Hermitian space of finite dimension over the algebraic closure of a real closed field K. We determine the orbits of the group of isometries of (V, H) in the set of K-subspaces of V . Throughout the paper K denotes a real closed field and K its algebraic closure. Then it is well known (see, for example, [4, Chapter 2], [23]; see also [8]) that K = K(i) with i = √−1. Also we let (V,H) be an anisotropic Hermitian space (with respect to the involution underlying the quadratic field extension K/K) of finite dimension n over K. In this context we consider the natural action of the unitary group U = U(V,H) of isometries of (V,H) on the set Xd of all ddimensional K-subs…