0000000000133152

AUTHOR

Paula Maria Salgado-hernanz

showing 3 related works from this author

Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station

2015

[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…

010504 meteorology & atmospheric sciencesMeteorologyGeography Planning and Development0211 other engineering and technologiesData validationlcsh:G1-92202 engineering and technology01 natural sciencesVineyardSoil roughnessFootprintEarth and Planetary Sciences (miscellaneous)Vegetation optical depth14. Life underwaterPrecipitationWater content021101 geological & geomatics engineering0105 earth and related environmental sciencesRadiometerHumedad del suelobrightness temperature ELBARA-II L-MEB SMOS SMOS level 3 data soil moisture soil roughness Valencia Anchor Station vegetation optical depth15. Life on landEspesor óptico de la vegetaciónTerm (time)GeographyL-MEB13. Climate actionBrightness temperatureRugosidad del sueloTemperatura de brilloSoil moistureBrightness temperaturelcsh:Geography (General)
researchProduct

Evaluating the impact of roughness in soil moisture and optical thickness retrievals over the VAS area

2014

International audience

Valencia Anchor Station[SDE.MCG]Environmental Sciences/Global ChangesL - MEB modelSoil scienceSurface finishELBARA - IIsoil roughnessEnvironmental sciencesoil moistureWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSRemote sensingSMOS
researchProduct

Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field

2015

Abstract The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has been analyzed in numerous studies, mostly in the framework of the ESA SMOS and NASA SMAP missions. To retrieve SM from L-band radiometric observations, two significant effects have to be accounted for, namely soil roughness and vegetation optical depth. In this study, soil roughness effects on retrieved SM values were evaluated using brightness temperatures acquired by the L-band ELBARA-II radiometer, over a vineyard field at the Valencia Anchor Station (VAS) site during the year 2013. Different combinations of the values of the model parameters used to account for soil roughness effects (…

BrightnessL bandRadiometerMean squared error[SDE.MCG]Environmental Sciences/Global ChangesSoil ScienceGeology15. Life on landL-bandAtmospheric radiative transfer codesL-MEBvegetationCalibrationsoil roughnessRadiometryEnvironmental sciencemicrowave radiometryComputers in Earth Sciencessoil moistureWater content[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processingComputingMilieux_MISCELLANEOUSRemote sensingSMOS
researchProduct