0000000000133155
AUTHOR
Mike Schwank
Towards a long-term dataset of ELBARA-II measurements assisting SMOS level-3 land product and algorithm validation at the Valencia Anchor Station
[EN] The Soil Moisture and Ocean Salinity (SMOS) mission was launched on 2nd November 2009 with the objective of providing global estimations of soil moisture and sea salinity. The main activity of the Valencia Anchor Station (VAS) is currently to assist in a long-term validation of SMOS land products. This study focus on a level 3 SMOS data validation with in situ measurements carried out in the period 2010-2012 over the VAS. ELBARA-II radiometer is placed in the VAS area, observing a vineyard field considered as representative of a major proportion of an area of 50×50 km, enough to cover a SMOS footprint. Brightness temperatures (TB) acquired by ELBARA-II have been compared to those obser…
Evaluating the impact of roughness in soil moisture and optical thickness retrievals over the VAS area
International audience
First evaluation of the simultaneous SMOS and ELBARA-II observations in the Mediterranean region
Abstract The SMOS (Soil Moisture and Ocean Salinity) mission was launched on November 2, 2009. Over the land surfaces, simultaneous retrievals of surface soil moisture (SM) and vegetation characteristics made from the multi-angular and dual polarization SMOS observations are now available from Level-2 (L2) products delivered by the European Space Agency (ESA). Therefore, first analyses evaluating the SMOS observations in terms of Brightness Temperatures (TB) and L2 products (SM and vegetation optical depth TAU) can be carried out over several calibration/validation (cal/val) sites selected by ESA over all continents. This study is based on SMOS observations and in situ measurements carried …
Comparison of SMOS and SMAP soil moisture retrieval approaches using tower-based radiometer data over a vineyard field
International audience; The objective of this study was to compare several approaches to soil moisture (SM) retrieval using l-band microwave radiometry. The comparison was based on a brightness temperature (TB) data set acquired since 2010 by the L-band radiometer ELBARA-II over a vineyard field at the Valencia Anchor Station (VAS) site. ELBARA-II, provided by the European Space Agency (ESA) within the scientific program of the SMOS (Soil Moisture and Ocean Salinity) mission, measures multiangular TB data at horizontal and vertical polarization for a range of incidence angles (30°–60°). Based on a three year data set (2010–2012), several SM retrieval approaches developed for spaceborne miss…
Retrievals of soil moisture and optical depth from CAROLS
International audience; We propose in this paper to evaluate a method to retrieve soil moisture (SM) and vegetation optical thickness, in areas of unknown roughness and unknown vegetation water content in view of operational applications, by using airborne Tb measurements acquired in South-West of France. Results are compared to in situ measurements, manual and automatic ones included in SMOSmania network, in the South-West of France.
Roughness and vegetation parameterizations at L-band for soil moisture retrievals over a vineyard field
Abstract The capability of L-band radiometry to monitor surface soil moisture (SM) at global scale has been analyzed in numerous studies, mostly in the framework of the ESA SMOS and NASA SMAP missions. To retrieve SM from L-band radiometric observations, two significant effects have to be accounted for, namely soil roughness and vegetation optical depth. In this study, soil roughness effects on retrieved SM values were evaluated using brightness temperatures acquired by the L-band ELBARA-II radiometer, over a vineyard field at the Valencia Anchor Station (VAS) site during the year 2013. Different combinations of the values of the model parameters used to account for soil roughness effects (…
L-Band radiative properties of vine vegetation at the MELBEX III SMOS Cal/Val Site
Radiative properties at 1.4 GHz of vine vegetation are investigated by measuring brightness temperatures with the ETH L-band Radiometer II (ELBARA II) operated on a tower at the Mediterranean Ecosystem L-band Characterisation Experiment III (MELBEX III) field site in Spain. To this aim, experiments with and without a reflecting foil placed under the vines were performed for the vegetation winter and summer states, respectively, to provide prevailingly information on vegetation transmissivities. The resulting parameters, which can be considered as "ground truth" for the MELBEX III vineyard, were retrieved from brightness temperature at horizontal and vertical polarization measured at observa…