0000000000133192

AUTHOR

Andreas Pozzer

0000-0003-2440-6104

Inappropriate evaluation of methodology and biases by P. Morfeld and T.C. Erren.

research product

Regional and global contributions of air pollution to risk of death from COVID-19

Abstract Aims The risk of mortality from the coronavirus disease that emerged in 2019 (COVID-19) is increased by comorbidity from cardiovascular and pulmonary diseases. Air pollution also causes excess mortality from these conditions. Analysis of the first severe acute respiratory syndrome coronavirus (SARS-CoV-1) outcomes in 2003, and preliminary investigations of those for SARS-CoV-2 since 2019, provide evidence that the incidence and severity are related to ambient air pollution. We estimated the fraction of COVID-19 mortality that is attributable to the long-term exposure to ambient fine particulate air pollution. Methods and results We characterized global exposure to fine particulates…

research product

Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective

Abstract Aims Long-term exposure of humans to air pollution enhances the risk of cardiovascular and respiratory diseases. A novel Global Exposure Mortality Model (GEMM) has been derived from many cohort studies, providing much-improved coverage of the exposure to fine particulate matter (PM2.5). We applied the GEMM to assess excess mortality attributable to ambient air pollution on a global scale and compare to other risk factors. Methods and results We used a data-informed atmospheric model to calculate worldwide exposure to PM2.5 and ozone pollution, which was combined with the GEMM to estimate disease-specific excess mortality and loss of life expectancy (LLE) in 2015. Using this model, …

research product

Aerosol Health Effects from Molecular to Global Scales.

Poor air quality is globally the largest environmental health risk. Epidemiological studies have uncovered clear relationships of gaseous pollutants and particulate matter (PM) with adverse health outcomes, including mortality by cardiovascular and respiratory diseases. Studies of health impacts by aerosols are highly multidisciplinary with a broad range of scales in space and time. We assess recent advances and future challenges regarding aerosol effects on health from molecular to global scales through epidemiological studies, field measurements, health-related properties of PM, and multiphase interactions of oxidants and PM upon respiratory deposition. Global modeling combined with epide…

research product

Earth System Chemistry integrated Modelling (ESCiMo) with the Modular Earth Submodel System (MESSy) version 2.51

Abstract. Three types of reference simulations, as recommended by the Chemistry–Climate Model Initiative (CCMI), have been performed with version 2.51 of the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model: hindcast simulations (1950–2011), hindcast simulations with specified dynamics (1979–2013), i.e. nudged towards ERA-Interim reanalysis data, and combined hindcast and projection simulations (1950–2100). The manuscript summarizes the updates of the model system and details the different model set-ups used, including the on-line calculated diagnostics. Simulations have been performed with two diff…

research product

Cold cloud microphysical process rates in a global chemistry–climate model

Microphysical processes in cold clouds which act as sources or sinks of hydrometeors below 0 ∘C control the ice crystal number concentrations (ICNCs) and in turn the cloud radiative effects. Estimating the relative importance of the cold cloud microphysical process rates is of fundamental importance to underpin the development of cloud parameterizations for weather, atmospheric chemistry, and climate models and to compare the output with observations at different temporal resolutions. This study quantifies and investigates the ICNC rates of cold cloud microphysical processes by means of the chemistry–climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) and defines the hierarchy of sources…

research product

Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon

Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM) is referred to as the Asian Tropopause Aerosol Layer (ATAL). The chemical composition, microphysical properties, and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade. In this work, we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1×1.1∘) to numerically simulate the emissions, chemistry, and transport of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012. We find a pronounced maximum of aerosol extin…

research product

Luftverschmutzung als wichtiger Kofaktor bei COVID-19-Sterbefällen

Zusammenfassung Hintergrund Die Sterblichkeit bei COVID-19 ist in Anwesenheit kardiopulmonaler Komorbiditäten erhöht. Luftverschmutzung ist ebenfalls mit einer erhöhten Sterblichkeit assoziiert, v. a. vermittelt durch kardiopulmonale Erkrankungen. Beobachtungen zu Beginn der COVID-19-Pandemie zeigten, dass die Sterblichkeit bei COVID-19 v. a. in Regionen mit stärkerer Luftverschmutzung erhöht ist. Ungeklärt ist der Einfluss von Luftverschmutzung für den Krankheitsverlauf bei COVID-19. Methode Es wurde eine selektive Literaturrecherche von Studien bis Anfang April 2021 in PubMed zum Zusammenhang von Luftverschmutzung und der COVID-19-Mortalität mit den Suchbegriffen „air pollution AND/OR COV…

research product

Global impact of monocyclic aromatics on tropospheric composition

Abstract. Aromatic compounds are reactive species influencing ozone formation, OH concentrations and organic aerosol formation. An assessment of their impacts on the gas-phase composition at a global scale has been performed using a general circulation atmospheric-chemistry model. Globally, we found a small annual average net decrease (less than 3 %) in global OH, ozone, and NOx mixing ratios when aromatic compounds are included in the chemical mechanism. This inclusion of aromatics also results in CO mixing ratio increases, which cause a general decrease in OH concentrations. The largest changes are found in glyoxal and NO3, with increases in the atmospheric burden of 10 % and 6 %, respect…

research product

Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions

Abstract Aims Ambient air pollution is a major health risk, leading to respiratory and cardiovascular mortality. A recent Global Exposure Mortality Model, based on an unmatched number of cohort studies in many countries, provides new hazard ratio functions, calling for re-evaluation of the disease burden. Accordingly, we estimated excess cardiovascular mortality attributed to air pollution in Europe. Methods and results The new hazard ratio functions have been combined with ambient air pollution exposure data to estimate the impacts in Europe and the 28 countries of the European Union (EU-28). The annual excess mortality rate from ambient air pollution in Europe is 790 000 [95% confidence i…

research product

Simulation of organics in the atmosphere: evaluation of EMACv2.54 with the Mainz Organic Mechanism (MOM) coupled to the ORACLE (v1.0) submodel

Abstract. An updated and expanded representation of organics in the chemistry general circulation model EMAC (ECHAM5/MESSy for Atmospheric Chemistry) has been evaluated. First, the comprehensive Mainz Organic Mechanism (MOM) in the submodel MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) was activated with explicit degradation of organic species up to five carbon atoms and a simplified mechanism for larger molecules. Second, the ORACLE submodel (version 1.0) considers now condensation on aerosols for all organics in the mechanism. Parameterizations for aerosol yields are used only for the lumped species that are not included in the explicit mechanism. The simultaneous…

research product

Evaluation of the coupled high-resolution atmospheric chemistry model system MECO(n) using in situ and MAX-DOAS NO<sub>2</sub> measurements

Abstract. We present high spatial resolution (up to 2.2×2.2 km2) simulations focussed over south-west Germany using the online coupled regional atmospheric chemistry model system MECO(n) (MESSy-fied ECHAM and COSMO models nested n times). Numerical simulation of nitrogen dioxide (NO2) surface volume mixing ratios (VMRs) are compared to in situ measurements from a network with 193 locations including background, traffic-adjacent and industrial stations to investigate the model's performance in simulating the spatial and temporal variability of short-lived chemical species. We show that the use of a high-resolution and up-to-date emission inventory is crucial for reproducing the spatial varia…

research product

Chemical aging of atmospheric mineral dust during transatlantic transport

Abstract. Transatlantic dust transport has many implications for the atmosphere, ocean and climate. We present a modeling study on the impact of the key processes (dust emissions flux, convection and dust aging parameterizations) that control the transatlantic dust transport. Typically, the Inter-Tropical Convergence Zone (ITCZ) acts as a barrier for the meridional dust transport. To characterize the dust outflow over the Atlantic Ocean, we address two regional phenomena: (i) dust interactions with the ITCZ (DIZ) and (ii) the adjacent dust transport over the Atlantic Ocean (DTA). In the DTA zone, the dust loading shows a steep and linear gradient westward over the Atlantic Ocean where parti…

research product