0000000000133327

AUTHOR

Roberto Bonciani

QCD corrections to static heavy-quark form factors

Interactions of heavy quarks, in particular of top quarks, with electroweak gauge bosons are expected to be very sensitive to new physics effects related to electroweak symmetry breaking. These interactions are described by the so-called static form factors, which include anomalous magnetic moments and the effective weak charges. We compute the second-order QCD corrections to these static form factors, which turn out to be sizeable and need to be taken into account in searches for new anomalous coupling effects.

research product

Calculation of the two-loop heavy-flavor contribution to Bhabha scattering

We describe in detail the calculation of the two-loop corrections to the QED Bhabha scattering cross section due to the vacuum polarization by heavy fermions. Our approach eliminates one mass scale from the most challenging part of the calculation and allows us to obtain the corrections in a closed analytical form. The result is valid for arbitrary values of the heavy fermion mass and the Mandelstam invariants, as long as s,t,u >> m_e^2.

research product

Scalar particle contribution to Higgs production via gluon fusion at NLO

22 pages, 5 figures.-- ISI Article Identifier: 000252243700095.-- ArXiv pre-print available at: http://arxiv.org/abs/0709.4227

research product

Heavy-Flavor Contribution to Bhabha Scattering

We evaluate the last missing piece of the two-loop QED corrections to the high-energy electron-positron scattering cross section originating from the vacuum polarization by heavy fermions. The calculation is performed within a new approach applicable to a wide class of perturbative problems with mass hierarchy. The result is crucial for the high-precision physics program at existing and future e(+) e(-) colliders.

research product

The Two Loop Crossed Ladder Vertex Diagram with Two Massive Exchanges

We compute the (three) master integrals for the crossed ladder diagram with two exchanged quanta of equal mass. The differential equations obeyed by the master integrals are used to generate power series expansions centered around all the singular (plus some regular) points, which are then matched numerically with high accuracy. The expansions allow a fast and precise numerical calculation of the three master integrals (better than 15 digits with less than 30 terms in the whole real axis). A conspicuous relation with the equal-mass sunrise in two dimensions is found. Comparison with a previous large momentum expansion is made finding complete agreement.

research product

Two-Loop Planar Corrections to Heavy-Quark Pair Production in the Quark-Antiquark Channel

We evaluate the planar two-loop QCD diagrams contributing to the leading color coefficient of the heavy-quark pair production cross section, in the quark-antiquark annihilation channel. We obtain the leading color coefficient in an analytic form, in terms of one- and two-dimensional harmonic polylogarithms of maximal weight 4. The result is valid for arbitrary values of the Mandelstam invariants s and t, and of the heavy-quark mass m. Our findings agree with previous analytic results in the small-mass limit and numerical results for the exact amplitude.

research product

Two-loop QED Corrections to Bhabha Scattering

Recent developments in the calculation of the NNLO corrections to the Bhabha scattering differential cross section in pure QED are briefly reviewed and discussed.

research product

Quest for precision in hadronic cross sections at low energy: Monte Carlo tools vs. experimental data

We present the achievements of the last years of the experimental and theoretical groups working on hadronic cross section measurements at the low-energy e (+) e (-) colliders in Beijing, Frascati, Ithaca, Novosibirsk, Stanford and Tsukuba and on tau decays. We sketch the prospects in these fields for the years to come. We emphasise the status and the precision of the Monte Carlo generators used to analyse the hadronic cross section measurements obtained as well with energy scans as with radiative return, to determine luminosities and tau decays. The radiative corrections fully or approximately implemented in the various codes and the contribution of the vacuum polarisation are discussed.

research product

Two-parton contribution to the heavy-quark forward–backward asymmetry in NNLO QCD

Forward-backward asymmetries, $A_{FB}^Q$, are important observables for the determination of the neutral-current couplings of heavy quarks in inclusive heavy quark production, $e^+ e^- \to \gamma^*, Z^* \to Q +X$. In view of the measurement perspectives on $A_{FB}^Q$ at a future linear collider, precise predictions of $A_{FB}^Q$ are required for massive quarks. We compute the contribution of the $Q \bar Q$ final state to $A_{FB}^Q$ to order $\as^2$ in the QCD coupling. We provide general formulae, and we show that this contribution to $A_{FB}^Q$ is infrared-finite. We evaluate these two-parton contributions for $b$ and $c$ quarks on and near the $Z$ resonance, and for $t$ quarks above thres…

research product

Analytic results for virtual QCD corrections to Higgs production and decay

We consider the production of a Higgs boson via gluon-fusion and its decay into two photons. We compute the NLO virtual QCD corrections to these processes in a general framework in which the coupling of the Higgs boson to the external particles is mediated by a colored fermion and a colored scalar. We present compact analytic results for these two-loop corrections that are expressed in terms of Harmonic Polylogarithms. The expansion of these corrections in the low and high Higgs mass regimes, as well as the expression of the new Master Integrals which appear in the reduction of the two-loop amplitudes, are also provided. For the fermionic contribution, we provide an independent check of the…

research product