0000000000133388

AUTHOR

Simona Mancini

A decomposition approach for multidimensional knapsacks with family-split penalties

The optimization of Multidimensional Knapsacks with Family-Split Penalties has been introduced in the literature as a variant of the more classical Multidimensional Knapsack and Multi-Knapsack problems. This problem deals with a set of items partitioned in families, and when a single item is picked to maximize the utility, then all items in its family must be picked. Items from the same family can be assigned to different knapsacks, and in this situation split penalties are paid. This problem arises in real applications in various fields. This paper proposes a new exact and fast algorithm based on a specific Combinatorial Benders Cuts scheme. An extensive experimental campaign computational…

research product

Optimal selection of touristic packages based on user preferences during sports mega-events

Sport mega-events, such as the Soccer World Cup or Olympic Games, attract many visitors from all over the world. Most of these visitors are also interested in, besides attending the sports events, visiting the host nation and the neighboring countries. In this paper, we focus on the upcoming FIFA World Cup Qatar 2022. As per the schedule of the tournament, a national team can play 7 matches at most. Therefore, a supporter will have six short breaks (of three to five days) between consecutive matches in addition to two longer ones, immediately before and after the tournament, during which they can plan some touris- tic trips. We study the problem faced by a touristic trip provider who wants …

research product

The collaborative consistent vehicle routing problem with workload balance

Abstract The rising competition in the logistics sector forces companies to be more economically efficient. One of the major sources of inefficiency is the incomplete usage of available resources, such as vehicles’ capacities. Mechanism that allow to better exploit such resources by enabling carrier collaborations are on the rise. Our study examines a centrally organized multi-period collaborative vehicle routing problem, where carriers can exchange customers who have to be serviced on a regular basis. Collaborations, where carriers serve frequent customers, are supposed to face the problem of (i) time consistency in terms of visiting time, and of (ii) service consistency. The latter ensure…

research product

The on-demand warehousing problem

Warehouses are key elements of supply chain networks, and great attention is paid to increase their efficiency. Highly volatile space requirements are enablers of innovative resource sharing concepts, where warehouse capacities are traded on online platforms. In this context, our paper introduces the on-demand warehousing problem from the perspective of platform providers. The objective prioritises demand–supply matching with maximisation of the number of transactions. If there is a tie, the secondary objective maximises the number of suppliers matched with at least one customer and the number of customers that have matches within a specific threshold with respect to the minimum achievable …

research product

Vehicle routing problems with drones equipped with multi-package payload compartments

The vehicle routing problem with drones (VRP-D) consists of designing combined truck-drone routes and schedules to serve a set of customers with specific requests and time constraints. In this paper, VRP-D is extended to include a fleet of drones equipped with multi-package payload compartments to serve more customers on a single trip. Moreover, a drone can return to a truck, different from the one from which it started, to swap its depleted battery and/or to pick up more packages. This problem, denoted as VRP-D equipped with multi-package payload compartments (VRP-D-MC), aims to maximize total profit. In this work, an adaptive multi-start simulated annealing (AMS-SA) metaheuristic algorith…

research product

A Realistic Model to Support Rescue Operations After an Earthquake via UAVs

In this paper, we consider the problem of completely flying over an area just hit by an earthquake with a fleet of Unmanned Aerial Vehicles (UAVs) to opportunely direct rescue teams. The cooperation between UAVs ensures that the search for possible survivors can be faster and more effective than the solutions currently implemented by civil protection. To study this scenario, we introduce the Cover by Multitrips with Priorities (CMP) problem, which tries to keep into account all the main real-life issues connected to the flight and coordination of the UAVs. We conduct a theoretical study to estimate the best number of UAVs and additional batteries, to give indications to the organization tha…

research product

Combining workload balance and patient priority maximisation in operating room planning through hierarchical multi-objective optimisation

Abstract Previous analysis suggested the opportunity to consider the preferences of different stakeholders (hospital, patients, doctors and nurses) through the adoption of both patient priority maximisation and workload balance as performance criteria. The aim of this paper is to develop an effective and efficient solution approach for the operating room planning and scheduling capable to take into account the patient priority maximisation and workload balance criteria at the same time. This work is inspired by the need of a deeper understanding of the quality of the solutions obtained when a combination of the two criteria leads the OR planning decisions. Starting from a hierarchical multi…

research product

Vehicle routing with private and shared delivery locations

Abstract The rapid growth of e-commerce has led to an increase of home delivery requests. Providing efficient distribution systems for services on the last mile has become a challenging issue for logistics companies, where a trade-off between the classical approaches, attended home delivery (AHD) and usage of shared delivery locations (SDLs) has been identified. AHD provides a higher quality of service but implies very high costs for the company, while usage of SDL requires customers to perform the very last mile by themselves. For companies, this bears the risk of a decrease in the perceived service quality. However, due to consolidation effects, transportation costs can be considerably mi…

research product

An expansion–coalescence model to track gas bubble populations in magmas

Abstract We propose a kinetic model that statistically describes the growth by decompression, exsolution and coalescence of a polydisperse population of gas bubbles in a silicate melt. The model is homogeneous in space and its main variable is a distribution function representing the probability to find a bubble of volume v and mass m at time t. The volume and mass growth rates are described by a simplification of the classical monodisperse bubble growth model. This simplification, which shortens computational time, removes the coupling between mass evolution and an advection–diffusion equation describing the behavior of the volatile concentration in the melt. We formulate three coalescence…

research product

Vehicle scheduling for rental-with-driver services

Abstract In this paper, we introduce a new vehicle scheduling problem (VSP) with driver consistency faced by rental-with-driver companies. A weekly time-horizon is considered and a set of potential customers, each one associated with a list of required tasks, is assumed. The company can choose to accept or reject a customer, but if accepted, all required tasks must be performed by the same driver. A profit is associated with each customer. The goal is to maximize the company’s total profit, by respecting a list of daily and the weekly drivers’ workload limitations imposed by drivers’ contracts. We propose a mathematical formulation of the problem and design an exact solution method based on…

research product

Design and optimisation of an innovative two-hub-and-spoke network for the Mediterranean short-sea-shipping market

Abstract Short Sea Shipping (SSS) is generally considered as a privileged transport mode in terms of reducing road congestion and related external costs. In the last two decades, SSS has attracted a lot of attention in the European Union, where it is also regarded as a key factor for economic and social cohesion between countries. In this regard, the present study proposes a new network design that aims at improving and increasing freight traffic between the north-western and the south-eastern shores of the Mediterranean Basin. The proposed model, designed for Ro-Ro (Roll-on Roll-off) freight transport, tries to overcome the limits of the existing multi-port-calling services through an inno…

research product

The Heterogeneous Fleet Vehicle Routing Problem with Draft Limits

Over the past two decades, international maritime transport has been characterized by the advent of ever larger ships. This phenomenon is known as naval gigantism. If, on the one hand, naval gigantism allows to reduce transport costs by exploiting the economies of scale achievable by large ships, on the other hand, it implies a series of operational issues. Indeed, due to their large draft, such giant vessels are not allowed to enter small ports when fully or near-fully loaded, and in some cases, they cannot enter such small ports at all. In fact, their draft can strongly vary depending on the load on board. This implies restrictions for vessels in accessing ports, which impact not only at …

research product

The Multi-period Multi-trip Container Drayage Problem with Release and Due Dates

Abstract The Container Drayage Problem (CDP) aims at routing a fleet of trucks, based at a common terminal, to serve customers while minimizing the total travel distance. Each trip starts from and ends at the terminal, and handles a subset of customers. Each customer requires either that a container is picked up or delivered. We introduce a more realistic variant, i.e., the Multi-trip Multi-period CDP with Release and Due Dates (MM-CDP-RDD), in which the planning horizon is composed of several periods (days). On each day, each truck may perform more than one trip respecting the Release and Due Dates (RDD) associated with customer services, corresponding to the first and the last day on whic…

research product

A more efficient cutting planes approach for the green vehicle routing problem with capacitated alternative fuel stations

AbstractThe Green Vehicle Routing Problem with Capacitated Alternative Fuel Stations assumes that, at each station, the number of vehicles simultaneously refueling cannot exceed the number of available pumps. The state-of-the-art solution method, based on the generation of all feasible non-dominated paths, performs well only with up to 2 pumps. In fact, it needs cloning the paths between every pair of pumps. To overcome this issue, in this paper, we propose new path-based MILP models without cloning paths, for both the scenario with private stations (i.e., owned by the fleet manager) and that with public stations. Then, a more efficient cutting plane approach is designed for addressing both…

research product

The Multiple Multidimensional Knapsack with Family-Split Penalties

Abstract The Multiple Multidimensional Knapsack Problem with Family-Split Penalties (MMdKFSP) is introduced as a new variant of both the more classical Multi-Knapsack and Multidimensional Knapsack Problems. It reckons with items categorized into families and where if an individual item is selected to maximize the profit, all the items of the same family must be selected as well. Items belonging to the same family can be assigned to different knapsacks; however, in this case, split penalties are incurred. This problem arises in resource management of distributed computing contexts and Service Oriented Architecture environments. An exact algorithm based on the exploitation of a specific combi…

research product