0000000000133409

AUTHOR

T.j. Procter

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

research product

Nuclear mean-square charge radii of63,64,66,68−82Ga nuclei: No anomalous behavior atN=32

Collinear laser spectroscopy was performed on the ${}^{63,64,66,68\ensuremath{-}82}$Ga isotopes with neutron numbers from $N=32$ to $N=51$. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of ${}^{63,70}$Ga, measured on an atomic transition in the neutral atom. The ground-state spin of ${}^{63}$Ga is determined to be $I=3/2$. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates …

research product

A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE

A newdecay-spectroscopystation(DSS)has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 mg=cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108 deg. away, allowing longer-lived species to be studied. Up to three high purity germanium detector…

research product

CRIS: A new method in isomeric beam production

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

research product

Measurement of the first ionization potential of astatine by laser ionization spectroscopy

The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to sup…

research product

Changes in mean-squared charge radii and magnetic moments of $^{179–184}$Tl measured by in-source laser spectroscopy

Hyperfine structure and isotope shifts have been measured for the ground and isomeric states in the neutron-deficient isotopes 179–184Tl using the 276.9-nm transition. The experiment has been performed at the CERN-Isotope Separator On-Line facility using the in-source resonance-ionization laser spectroscopy technique. Spins for the ground states in 179,181,183Tl have been determined as I=1/2. Magnetic moments and changes in the nuclear mean-square charge radii have been deduced. By applying the additivity relation for magnetic moments of the odd-odd Tl nuclei the leading configuration assignments were confirmed. A deviation of magnetic moments for isomeric states in 182,184Tl from the trend…

research product

Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\delta\langle r^{2}\rangle^{A,221}$ values for $^{218m,219}\text{Fr}$ and $^{229,231}\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\text{Fr}$ has normal staggering. This sugges…

research product

Change in structure between the $I = 1/2$ states in $^{181}$Tl and $^{177,179}$Au

Abstract The first accurate measurements of the α-decay branching ratio and half-life of the I π = 1 / 2 + ground state in 181Tl have been made, along with the first determination of the magnetic moments and I = 1 / 2 spin assignments of the ground states in 177,179Au. The results are discussed within the complementary systematics of the reduced α-decay widths and nuclear g factors of low-lying, I π = 1 / 2 + states in the neutron-deficient lead region. The findings shed light on the unexpected hindrance of the 1 / 2 + → 1 / 2 + , 181Tl → g 177 Aug α decay, which is explained by a mixing of π 3 s 1 / 2 and π 2 d 3 / 2 configurations in 177Aug, whilst 181Tlg remains a near-pure π 3 s 1 / 2 .…

research product

Magnetic and quadrupole moments of neutron deficient 58-62Cu isotopes

Abstract This paper reports on the ground state nuclear moments measured in 58–62Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for 58–60Cu have been measured for the first time as Q ( Cu 58 ) = − 15 ( 3 ) efm 2 , Q ( Cu 59 ) = − 19.3 ( 19 ) efm 2 , Q ( Cu 60 ) = + 11.6 ( 12 ) efm 2 and with higher precision for 61,62Cu as Q ( Cu 61 ) = − 21.1 ( 10 ) efm 2 , Q ( Cu 62 ) = − 2.2 ( 4 ) efm 2 . The magnetic moments of 58,59Cu are measured with a higher precision as μ ( Cu 58 ) = + 0.570 ( 2 ) μ N and μ ( Cu 59 ) = + 1.8910 ( 9 ) μ N . The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective i…

research product

Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…

research product

The Collinear Fast Beam laser Spectroscopy (Cfbs) experiment at Triumf

Abstract Laser spectroscopy experiments at radioactive ion beam facilities around the world investigate properties of exotic nuclei for scientific endeavours such as, but not limited to, the investigation of nuclear structure. Advancements in experimental sensitivity and performance are continuously needed in order to extend the reach of nuclei that can be measured. The collinear fast beam laser spectroscopy ( Cfbs ) setup at Triumf , coupled to an out-of-plane radio-frequency quadrupole Paul trap, enables measurements of some of the most fundamental nuclear properties for long-lived ground and isomeric states. The first comprehensive overview of the Cfbs experiment is provided along with d…

research product

Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line

The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for highresolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests. ispartof: pages:012070-6 ispartof: Journal of Physics: Conference Serie…

research product

Nuclear mean-square charge radii of $^{63,64,66,68−82}$Ga nuclei: No anomalous behavior at N=32

Collinear laser spectroscopy was performed on the 63,64,66,68−82Ga isotopes with neutron numbers from N = 32 to N = 51. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of 63,70Ga, measured on an atomic transition in the neutral atom. The ground-state spin of 63Ga is determined to be I = 3/2. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates that there is no evidence of anoma…

research product

Nuclear moments and charge radii of neutron-deficient francium isotopes and isomers

Collinear laser fluorescence spectroscopy has been performed on the ground and isomeric states of $^{204,206}\mathrm{Fr}$ in order to determine their spins, nuclear moments, and changes in mean-squared charge radii. A new experimental technique has been developed as part of this work which much enhances the data collection rate while maintaining the high resolution. This has permitted the extension of this study to the two isomeric states in each nucleus. The investigation of nuclear $g$ factors and mean-squared charge radii indicates that the neutron-deficient Fr isotopes lie in a transitional region from spherical towards more collective structures.

research product

Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE

A new collinear resonant ionization spectroscopy (Cris)beam line has recently been installed at Isolde, Cern utilising lasers to combine collinear laser spectroscopy and resonant ionization spectroscopy. The combined technique offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing sensitive secondary experiments to be performed. A new programme aiming to use the Cris technique for the separation of nuclear isomeric states for decay spectroscopy will commence in 2011. A decay spectroscopy station, consisting of a rotating wheel implantation system for alpha decay spectroscopy, and thre…

research product

Laser spectroscopy of gallium isotopes beyond N = 50

The installation of an ion-beam cooler-buncher at the ISOLDE, CERN facility has provided increased sensitivity for collinear laser spectroscopy experiments. A migration of single-particle states in gallium and in copper isotopes has been investigated through extensive measurements of ground state and isomeric state hyperfine structures. Lying beyond the N = 50 shell closure, 82Ga is the most exotic nucleus in the region to have been studied by optical methods, and is reported here for the first time. ispartof: pages:012071-6 ispartof: Journal of Physics: Conference Series vol:381 issue:1 pages:012071-6 ispartof: Rutherford Centennial Conference on Nuclear Physics location:Manchester, UK dat…

research product