6533b823fe1ef96bd127ecd9

RESEARCH PRODUCT

Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

Mark BissellB. A. MarshJ. BillowesKara Marie LynchI. BudinčevićH. HeylenR. P. De GrooteSebastian RotheV. N. FedosseevKieran FlanaganS. De SchepperRalf Erik RosselRalf Erik RosselH. Henry StrokeT.j. ProcterKlaus WendtGerda NeyensThomas Elias CocoliosI. StrashnovS. FranchooR. F. Garcia Ruiz

subject

PhysicsNuclear and High Energy PhysicsNUCLEAR MOMENTS 218m219229231Fr; measured hyperfine spectra isotope shifts; deduced charge radii nuclear magnetic moments nuclear g factors. Comparison with available data.Isotopemedia_common.quotation_subjectFOS: Physical scienceschemistry.chemical_elementCharge (physics)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exAsymmetryFranciumNuclear physicschemistryNuclear Experiment (nucl-ex)Atomic physicsGround stateSpin (physics)SpectroscopyNuclear ExperimentMagnetic dipoleRADIOACTIVITY 218mFr measured decay products Ea; deduced T1/2.media_common

description

The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\delta\langle r^{2}\rangle^{A,221}$ values for $^{218m,219}\text{Fr}$ and $^{229,231}\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\text{Fr}$ has normal staggering. This suggests that both isotopes reside at the borders of a region of inverted staggering, which has been associated with reflection-asymmetric shapes. The $g(^{219}\text{Fr}) = +0.69(1)$ value supports a $\pi 1h_{9/2}$ shell model configuration for the ground state. The $g(^{229,231}\text{Fr})$ values support the tentative $I^{\pi}(^{229,231}\text{Fr}) = (1/2^{+})$ spin, and point to a $\pi s_{1/2}^{-1}$ intruder ground state configuration.

10.1103/physrevc.90.014317https://lirias.kuleuven.be/handle/123456789/458480