0000000000133405

AUTHOR

S. De Schepper

showing 6 related works from this author

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

2012

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

Nuclear and High Energy Physics[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph]chemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesFranciumIonization0103 physical sciencesPhysics::Atomic PhysicsLaser spectroscopyNuclear Experiment010306 general physicsSpin (physics)SpectroscopyInstrumentationHyperfine structureComputingMilieux_MISCELLANEOUSLarge Hadron ColliderIsotopeRadioactive decay spectroscopy010308 nuclear & particles physicsIon beam purificationIsotope shiftchemistry13. Climate actionPhysics::Accelerator PhysicsHyperfine structureAtomic physicsRadioactive decayNuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE

2013

A newdecay-spectroscopystation(DSS)has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 mg=cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108 deg. away, allowing longer-lived species to be studied. Up to three high purity germanium detector…

PhysicsNuclear and High Energy PhysicsSilicon010308 nuclear & particles physicsPhysics::Instrumentation and DetectorsUltra-high vacuumGamma raychemistry.chemical_elementGermaniumFission products[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesCharged particleBeamlinechemistry0103 physical sciencesPhysics::Accelerator PhysicsAlpha decaygamma-rayAtomic physics010306 general physicsSpectroscopyLaser-assisted decay spectroscopyInstrumentationBeam (structure)
researchProduct

CRIS: A new method in isomeric beam production

2013

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

Ion beamRadioactive decay spectroscopyPhysicsQC1-999chemistry.chemical_elementIon beam purificationFranciumSemiconductor detectorIsotope shiftchemistryIonizationPhysics::Atomic and Molecular ClustersPhysics::Accelerator PhysicsNeutronHyperfine structurePhysics::Atomic PhysicsAtomic physicsLaser spectroscopySpectroscopyNuclear ExperimentBeam (structure)Radioactive decay
researchProduct

Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

2014

The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\delta\langle r^{2}\rangle^{A,221}$ values for $^{218m,219}\text{Fr}$ and $^{229,231}\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\text{Fr}$ has normal staggering. This sugges…

PhysicsNuclear and High Energy PhysicsNUCLEAR MOMENTS 218m219229231Fr; measured hyperfine spectra isotope shifts; deduced charge radii nuclear magnetic moments nuclear g factors. Comparison with available data.Isotopemedia_common.quotation_subjectFOS: Physical scienceschemistry.chemical_elementCharge (physics)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nucl-exAsymmetryFranciumNuclear physicschemistryNuclear Experiment (nucl-ex)Atomic physicsGround stateSpin (physics)SpectroscopyNuclear ExperimentMagnetic dipoleRADIOACTIVITY 218mFr measured decay products Ea; deduced T1/2.media_common
researchProduct

Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

2013

The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…

PhysicsMagnetic moment010308 nuclear & particles physicsSpin parity and isobaric spinOther Fields of PhysicsGeneral Physics and AstronomyCharge densitychemistry.chemical_element[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesIonFranciumElectromagnetic moments190 ≤ A ≤ 219 isotpeschemistryIonization0103 physical sciencesNeutronCharge distributionPhysics::Atomic PhysicsAtomic physics010306 general physicsSpectroscopyWave functionNuclear Experiment
researchProduct

Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE

2012

A new collinear resonant ionization spectroscopy (Cris)beam line has recently been installed at Isolde, Cern utilising lasers to combine collinear laser spectroscopy and resonant ionization spectroscopy. The combined technique offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing sensitive secondary experiments to be performed. A new programme aiming to use the Cris technique for the separation of nuclear isomeric states for decay spectroscopy will commence in 2011. A decay spectroscopy station, consisting of a rotating wheel implantation system for alpha decay spectroscopy, and thre…

laser assisted decay spectroscopyHistoryIon beamCRIS beam line[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyParticle detector010305 fluids & plasmasEducationlaw.inventionlawIonization0103 physical sciencesNuclear Experiment010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSChemistryLaserComputer Science ApplicationsSemiconductor detectorcollinear resonant ionization spectroscopyPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentAlpha decayAtomic physicsRadioactive decay
researchProduct