0000000000133406

AUTHOR

I. Budinčević

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

research product

Laser and decay spectroscopy of the short-lived isotope Fr214 in the vicinity of the N=126 shell closure

research product

CRIS: A new method in isomeric beam production

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

research product

Simple Nuclear Structure inCd111–129from Atomic Isomer Shifts

Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction wi…

research product

Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry

The magnetic dipole moments and changes in mean-square charge radii of the neutron-rich $^{218m,219,229,231}\text{Fr}$ isotopes were measured with the newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at ISOLDE, CERN, probing the $7s~^{2}S_{1/2}$ to $8p~^{2}P_{3/2}$ atomic transition. The $\delta\langle r^{2}\rangle^{A,221}$ values for $^{218m,219}\text{Fr}$ and $^{229,231}\text{Fr}$ follow the observed increasing slope of the charge radii beyond $N~=~126$. The charge radii odd-even staggering in this neutron-rich region is discussed, showing that $^{220}\text{Fr}$ has a weakly inverted odd-even staggering while $^{228}\text{Fr}$ has normal staggering. This sugges…

research product

High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN-ISOLDE

The Collinear Resonance Ionisation Spectroscopy (CRIS) experiment at CERN has achieved high-resolution resonance ionisation laser spectroscopy with a full width at half maximum linewidth of 20(1) MHz for 219;221Fr, and has measured isotopes as short lived as 5 ms with 214Fr. This development allows for greater precision in the study of hyperfine structures and isotope shifts, as well as a higher selectivity of singleisotope, even single-isomer, beams. These achievements are linked with the development of a new laser laboratory and new data-acquisition systems. publisher: Elsevier articletitle: High-resolution laser spectroscopy with the Collinear Resonance Ionisation Spectroscopy (CRIS) exp…

research product

From Calcium to Cadmium: Testing the Pairing Functional through Charge Radii Measurements of Cd100−130

Differences in mean-square nuclear charge radii of $^{100--130}\mathrm{Cd}$ are extracted from high-resolution collinear laser spectroscopy of the $5s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}5p\text{ }{^{2}P}_{3/2}$ transition of the ion and from the $5s5p\text{ }{^{3}P}_{2}\ensuremath{\rightarrow}5s6s\text{ }{^{3}S}_{1}$ transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete $sdgh$ shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.

research product

Combined high-resolution laser spectroscopy and nuclear decay spectroscopy for the study of the low-lying states inFr206,At202, andBi198

High-resolution laser spectroscopy was performed on $^{206}\mathrm{Fr}$ with the collinear resonance ionization spectroscopy (CRIS) experiment at CERN-ISOLDE. The hyperfine structure and isotope shift of the ground, first isomeric and second isomeric states were measured. The hyperfine components were unambiguously assigned to each nuclear state by means of laser-assisted nuclear decay spectroscopy. The branching ratios in the $\ensuremath{\alpha}$ decay of $^{206}\mathrm{Fr}$ and $^{202}\mathrm{At}$ were also measured for the first time with isomerically purified beams. The extracted hindrance factors allow determination of the spin of the ground, first isomeric, and second isomeric states…

research product

Use of a Continuous Wave Laser and Pockels Cell for Sensitive High-Resolution Collinear Resonance Ionization Spectroscopy

New technical developments have led to a 2 orders of magnitude improvement of the resolution of the collinear resonance ionization spectroscopy (CRIS) experiment at ISOLDE, CERN, without sacrificing the high efficiency of the CRIS technique. Experimental linewidths of 20(1) MHz were obtained on radioactive beams of francium, allowing us for the first time to determine the electric quadrupole moment of the short lived [t1/2=22.0(5) ms]219Fr Qs=−1.21(2) eb, which would not have been possible without the advantages offered by the new method. This method relies on a continuous-wave laser and an external Pockels cell to produce narrow-band light pulses, required to reach the high resolution in t…

research product

Collinear Resonance Ionization Spectroscopy of Neutron-Deficient Francium Isotopes

The magnetic moments and isotope shifts of the neutron-deficient francium isotopes 202-205Fr were measured at ISOLDE-CERN with use of collinear resonance ionization spectroscopy. A production-to-detection efficiency of 1% was measured for 202Fr. The background from nonresonant and collisional ionization was maintained below one ion in 105 beam particles. Through a comparison of the measured charge radii with predictions from the spherical droplet model, it is concluded that the ground-state wave function remains spherical down to 205Fr, with a departure observed in 203Fr (N = 116). ispartof: Physical Review Letters vol:111 issue:21 pages:212501-4 ispartof: location:United States status: pub…

research product

Spins and electromagnetic moments of Cd101–109

The neutron-deficient cadmium isotopes have been measured by high-resolution laser spectroscopy at CERN-ISOLDE. The electromagnetic moments of $^{101}\mathrm{Cd}$ have been determined for the first time and the quadrupole-moment precision of $^{103}\mathrm{Cd}$ has been vastly improved. The results on the sequence of $5/{2}^{+}$ ground states in $^{101--109}\mathrm{Cd}$ are tentatively discussed in the context of simple structure in complex nuclei as similarities are found with the $11/{2}^{\ensuremath{-}}$ states in the neutron-rich cases. Comparison with shell-model calculations reveals a prominent role of the two holes in the $Z=50$ core.

research product